• Title/Summary/Keyword: soil model

Search Result 4,495, Processing Time 0.031 seconds

Estimation of Runoff Curve Number for Chungju Dam Watershed Using SWAT (SWAT을 이용한 충주댐 유역의 유출곡선지수 산정 방안)

  • Kim, Nam-Won;Lee, Jin-Won;Lee, Jeong-Woo;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1231-1244
    • /
    • 2008
  • The objective of this study is to present a methodology for estimating runoff curve number(CN) using SWAT model which is capable of reflecting watershed heterogeneity such as climate condition, land use, soil type. The proposed CN estimation method is based on the asymptotic CN method and particularly, it uses surface flow data simulated by SWAT. This method has advantages to estimate spatial CN values according to subbasin division and to reflect watershed characteristics because the calibration process has been made by matching the measured and simulated streamflows. Furthermore, the method is not sensitive to rainfall-runoff data since CN estimation is on a daily basis. The SWAT based CN estimation method is applied to Chungju dam watershed. The regression equation of the estimated CN that exponentially decays with the increase of rainfall is presented.

A study of seasonal variation of the residual flow before and after Saemangeum reclamation (새만금간척전 .후 잔차류의 계절변화에 관한 연구)

  • 신문섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.155-161
    • /
    • 1999
  • The land reclamation area of Saemangeum(Kunsan) is located between 126$^{\circ}$10' E~126$^{\circ}$50' E and 35$^{\circ}$35' N~356$^{\circ}$05'N at the western coast of the Korean peninsula. The are many small islands including extensive areas of semi-diurnally flooded and dewatered tidal flats. The reclamation area of Saemangeum has a range of 5.6m spring tide and the maximum tidal current speed is about 1.41m s-1 in ordinary spring tide. Most of the sediments deposited on the tidal flats are transported from the Geum river, the Manjyung river and The Dongjin river. The soil in this area consists of silty sand with the depth of 10m to 30m . The wind in winter is strong from the direction of northwest. In the past twenty years, land reclamation projects for agricutural purpose or industrial cocmplex have been mostly implemented along the western coast of Korea. Saemangeum coastal area is being constructed the33km sea dike and 40, 100ha reclamation area. The purpose of this study is to find the residual circulations in four seasons after the dike construction by a robust diagnostic and prognostic numerical model. Heat flux at the sea surface in January ,May , August , October was asopted on the basis on the daily inflow of solar radiation at the earth surface, assuming an average atomospheric transmission and no clouds , as a function of latitude and time of year(George L.P.J.E William, 1990). The discharge from the Geum , the Mankyung and the Dongjin rivers was adopted on the basis of experience formula of river flow in January , May ,August, October (The M. of C.Korea, 1993) . Water temperature and salinity along the open boundaries are obtained from the results of field observation s.

  • PDF

Calibration of Water Quality Parameters in SWAT Considering Continuous Drought Periods 2014~2015 (2014~2015 연속가뭄을 고려한 SWAT 수질 매개변수 보정)

  • Kim, Da Rae;Lee, Ji Wan;Jung, Chung Gil;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • This study is to calibrate the SWAT (Soil and Water Assessment Tool) water quality of SS (Suspended Solid), T-P (Total Phosphorus), and T-N (Total Nitrogen) by focusing on 2014~2015 drought periods and identify the important parameters. For Gongdo watershed ($366.5km^2$), the SWAT was calibrated for 2 cases of 2002~2006 normal year focusing calibration and 2014~2015 drought focusing calibration respectively. The parameters of N_UPDIS (Nitrogen uptake distribution parameter) and CMN (Rate factor for humus mineralization of active organic nutrients) played important roles for T-N calibration during drought periods. The SWAT SS, T-N, and T-P average $R^2$ (Coefficient of determination) results by focusing on 2014~2015 drought periods calibration showed 0.71, 0.65 and 0.62 while 2002~2006 normal year focusing calibration showed 0.63, 0.58 and 0.50 respectively. Also SWAT SS, T-N, and T-P model efficiency NSE (Nash-Sutcliffe efficiency) results by focusing on drought period (2014~2015) calibrated showed 0.76, 0.77, 0.87 respectively. Even though the SS, T-P parameters were unchanged during the calibration, the SS and T-P results were improved by the hydrological parameters (SCS-CN, SOL_K, SLSOIL) during the drought periods. The SWAT water quality calibration needs to be considered for the movement of SS and nutrients transport especially focusing on the drought characteristics.

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 3: Estimation of Fog Deposition onto Cool-temperate Deciduous Forest by the Inferential Method

  • Katata, Genki;Yamaguchi, Takashi;Sato, Haruna;Watanabe, Yoko;Noguchi, Izumi;Hara, Hiroshi;Nagai, Haruyasu
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • Fog deposition onto the cool-temperate deciduous forest around Lake Mashu in northern Japan was estimated by the inferential method using the parameterizations of deposition velocity and liquid water content of fog (LWC). Two parameterizations of fog deposition velocity derived from field experiments in Europe and numerical simulations using a detailed multi-layer atmosphere-vegetation-soil model were tested. The empirical function between horizontal visibility (VIS) and LWC was applied to produce hourly LWC as an input data for the inferential method. Weekly mean LWC computed from VIS had a good correlation with LWC sampled by an active string-fog collector. By considering the enhancement of fog deposition due to the edge effect, fog deposition calculated by the inferential method using two parameterizations of deposition velocity agreed with that computed from throughfall data. The results indicated that the inferential method using the current parameterizations of deposition velocity and LWC can provide a rough estimation of water input due to fog deposition onto cool-temperature deciduous forests. Limitations of current parameterizations of deposition velocity related to wind speed, evaporation loss of rain and fog droplets intercepted by tree canopies, and leaf area index were discussed.

Extraction of the aquaculture farms information from the Landsat- TM imagery of the Younggwang coastal area

  • Shanmugam, P.;Ahn, Yu-Hwan;Yoo, Hong-Ryong
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.493-498
    • /
    • 2004
  • The objective of the present study is to compare various conventional and recently evolved satellite image-processing techniques and to ascertain the best possible technique that can identify and position of aquaculture farms accurately in and around the Younggwang coastal area. Several conventional techniques performed to extract such information fiom the Landsat-TM imagery do not seem to yield better information about the aquaculture farms, and lead to misclassification. The large errors between the actual and extracted aquaculture farm information are due to existence of spectral confusion and inadequate spatial resolution of the sensor. This leads to possible occurrence of mixture pixels or 'mixels' of the source of errors in the classification techniques. Understanding the confusing and mixture pixel problems requires the development of efficient methods that can enable more reliable extraction of aquaculture farm information. Thus, the more recently evolved methods such as the step-by-step partial spectral end-member extraction and linear spectral unmixing methods are introduced. The farmer one assumes that an end-member, which is often referred to as 'spectrally pure signature' of a target feature, does not appear to be a spectrally pure form, but always mix with the other features at certain proportions. The assumption of the linear spectral unmxing is that the measured reflectance of a pixel is the linear sum of the reflectance of the mixture components that make up that pixel. The classification accuracy of the step-by-step partial end-member extraction improved significantly compared to that obtained from the traditional supervised classifiers. However, this method did not distinguish the aquaculture ponds and non-aquaculture ponds within the region of the aquaculture farming areas. In contrast, the linear spectral unmixing model produced a set of fraction images for the aquaculture, water and soil. Of these, the aquaculture fraction yields good estimates about the proportion of the aquaculture farm in each pixel. The acquired proportion was compared with the values of NDVI and both are positively correlated (R$^2$ =0.91), indicating the reliability of the sub-pixel classification.ixel classification.

  • PDF

Calculation of Runoff in Flood Basin Using GIS (GIS를 활용한 홍수유역의 유출량 산정)

  • 이형석;김인호
    • Spatial Information Research
    • /
    • v.11 no.2
    • /
    • pp.143-153
    • /
    • 2003
  • In order to investigate the effect of a pouring rain that it follows in the typhoon, the effect analysis with actual measurement data of rainfall outflow it follows in flood basin is necessary. Also there is a case that it analyzes with the fact that the rainfall occurs identically in whole basin in case of the rainfall outflow analysis, but the actual rainfall distribution from the basin very will be irregular and the interpretation which it reflects must become accomplished. It created spatial information of terrain, land use and the soil using GIS. It created topographical factor of the subject area and calculated CN(runoff curve number) with WMS(Watershed Modeling System). It calculated runoff using a HEC-1 model and the Rational Method connected at the WMS. By connecting GIS and WMS, it calculated the effect of a pouring rain and runoff from the construction area. Also it will be able to apply with a basic data in more efficient runoff analysis.

  • PDF

Seismic Response Analysis of a Floating Bridge with Discrete Pontoons (이산폰툰형 부유식교량의 지진응답해석)

  • Kwon, Jang-Sup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.47-58
    • /
    • 2005
  • Dynamic response analysis in time dimain is conducted for floating bridges with discrete pontoons subject to spatial variation of ground motions. The Spatial variation of ground motions is considered with the coherency function model which represents wave passage, incoherence and local site effects. The superstructure of the bridge is represented by space frame and elastic catenary cable elements, the abutment us modelde with the spring element of FHWA guideline for considering soil structure interaction and the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients which are obtainde by boundary element method. multiple support excitations considering the spatial variation. The noticeable amplification of the response can be shown when the spatial variation of ground motions is incorporated in the anallysis of floating bridges.

Mechanical Properties of Filling Materials for Bored Pile in Rock (암반매입말뚝을 위한 주면고정액의 역학적 특성)

  • Moon, Kyoungtae;Park, Sangyeol;Shin, Mingun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.637-645
    • /
    • 2017
  • Jeju Island is composed of irregular volcanic rock layers formed by several volcanic activities. Since structure such as the offshore wind turbine has to support considerably large over turning moment due to long distance from foundation to load point and relatively large horizontal load. Pile foundations are needed to economically support such structure even in the case of rock layer. Therefore, in this study, mechanical performances are estimated by mixing ratio of water, cement, and sand to figure out optimal mixing ration of filling material for pile penetrated to rocky layers, and outcomes of this study are compared and analyzed with results of other researches. In the same conditions, mechanical performances of the mortar (S/(S+C)=20~40%) are better than those of cement paste and soil cement. On the basis of major outcome of this study, appropriate range of mixing and a strengthening model are suggested.

Prediction of Ultimate Bearing Capacity of Soft Soils Reinforced by Gravel Compaction Pile Using Multiple Regression Analysis and Artificial Neural Network (다중회귀분석 및 인공신경망을 이용한 자갈다짐말뚝 개량지반의 극한 지지력 예측)

  • Bong, Tae-Ho;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.27-36
    • /
    • 2017
  • Gravel compaction pile method has been widely used to improve the soft ground on the land or sea as one of the soft ground improvement technique. The ultimate bearing capacity of the ground reinforced by gravel compaction piles is affected by the soil strength, the replacement ratio of pile, construction conditions, and so on, and various prediction equations have been proposed to predict this. However, the prediction of the ultimate bearing capacity using the existing models has a very large error and variation, and it is not suitable for practical design. In this study, multiple regression analysis was performed using field loading test results to predict the ultimate bearing capacity of ground reinforced by gravel compaction pile, and the most efficient input variables are selected through evaluation of error by leave one out cross validation, and a multiple regression equation for the prediction of ultimate bearing capacity was proposed. In addition, the prediction error was evaluated by applying artificial neural network using the selected input variables, and the results were compared with those of the existing model.

Analysis of 3 Dimension Topography by Real-Time Kinematic GPS Surveying (RTK GPS 측량에 의한 3차원 지형 해석)

  • 신상철;서철수
    • Spatial Information Research
    • /
    • v.9 no.2
    • /
    • pp.309-324
    • /
    • 2001
  • To apply the real-time kinematic GPS surveying technique, this research has tried to obtain the TOKYO datum first from the continuous reference stations distributed all over the country. Then, analysis of the geography of a coastal area including both of land and sea has been carried out by the post-processed continuous kinematic GPS technique and the real-time kinematic GPS surveying technique. After considering the initial conditions and measuring time zone for real-time kinematic GPS, post-processed and the real-time kinematic GPS measurements have been carried out. A new system has been proposed to store measured data by using a program developed to store GPS data in real time and to monitor the satellite condition through controller simultaneously. The accuracy of GPS data acquired in real time was as good as that acquired by post processing. It is expected that it will be useful for the analysis of coastal geographic characteristics because DTM can be also constructed for the harbor reclamation, the dredging and the variation of soil movement in a river.

  • PDF