• Title/Summary/Keyword: soil bioremediation

Search Result 224, Processing Time 0.024 seconds

Evaluation of Bioremediation Effectiveness by Resolving Rate-Limiting Parameters in Diesel-Contaminated Soil

  • Joo, Choon-Sung;Oh, Young-Sook;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.607-613
    • /
    • 2001
  • The biodegradation rates of diesel oil by a selected diesel-degrading bacterium, Pseudomonas stutzeri strain Y2G1, and microbial consortia composed of combinations of 5 selected diesel-degrading bacterial were determined in liquid and soil systems. The diesel degradation rate by strain Y2G1 linearly increased $(R^2=0.98)$ as the diesel concentration increased up to 12%, and a degradation rate as high as 5.64 g/l/day was obtained. The diesel degradation by strain Y2G1 was significantly affected by several environmental factors, and the optimal conditions for pH, temperature, and moisture content were at pH8, $25^{\circ}C$, and 10%, respectively. In the batch soil microcosm tests, inoculation, especially in the form of a consortium, and the addition of nutrients both significantly enhanced the diesel degradation by a factor of 1.5 and 4, respectively. Aeration of the soil columns effectively accelerated the diesel degradation, and the initial degradation rate was obviously stimulated with the addition of inorganic nutrients. Based on these results, it was concluded that the major rate-limiting factors in the tested diesel-contaminated soil were the presence of inorganic nutrients, oxygen, and diesel-degrading microorganisms. To resolve these limiting parameters, bioremediation strategies were specifically designed for the tested soil, and the successful mitigation of the limiting parameters resulted in an enhancement of the bioremediation efficiency by a factor of 11.

  • PDF

비친수성유기물질(HOC)로 오염된 토양의 정화를 위한 동전기-생물활성화공정의 개발

  • 양지원;김상준;박지연;이유진;기대정
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.326-329
    • /
    • 2003
  • When an electrokinetic process is applied to a HOC-contaminated soil, hybrid types combined with soil flushing, chemical oxidation, and bioremediation are generally used. Especially when the electrokinetic process is combined with bioremediation, the hybrid technology can solve several limits of bioremediation such as low microbial mobility, low soil temperature, and shortage of nutrients in subsurface circumstance. Because microbial surface is charged negatively, the microorganism moves from cathode to anode under electrical field. In this study, mixed culture mainly-consisted by Pseudomonas sp. was applied to remediate pentadecane-contaminated kaolinite with particle size less than 300${\mu}{\textrm}{m}$. This remediation system was named ‘electrokinetic bioaugmentation’ and consisted of model aquifer, electrode reservoirs, bioreactor, power supply, and pump. The mixed culture above 0.5 of optical density in bioreactor was supplied to two reservoirs and penetrated soil when the electric current was applied. To enhance the removal efficiency, the optimal medium composition, electric current, and voltage were investigated.

  • PDF

Phytoremediation and Bioremediation of Land Contaminated by Hydrocarbons: Modeling and Field Applications

  • Sung, Kijune;Corapcioglu, M.Yavuz
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.18-21
    • /
    • 2002
  • Phytoremediation which uses plants to enhance the bioremediation through stimulation of microbial activity and root uptake, has been a topic of increasing interest. Mathematical model were developed that can be applied to various bioremediation methods in the unsaturated zone, especially phytoremediation, for simulating the fate and transport of contaminants under field conditions. A 2-year field study was conducted using 72 (1.5m long and 0.1 m diameter) column lysimeters with four treatments: Johnsongrass; wild rye grass; a rotation of Johnsongrass and wild rye grass; and unplanted fallow conditions. The developed model represented the fate and transport of contaminant both in vegetated and unplanted soils satisfactorily for field applications. Parameters related to the contaminant concentration in the water phase were the main parameters determining the contaminant fate in the vadose zone and indicated that the bioavailability can be the most important factor in the success of phytoremediation as well as bioremediation applications.

  • PDF

PAH로 오염된 토양의 미생물 분해 가속화 연구

  • 이효진;우승한;박종문
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.195-198
    • /
    • 2001
  • Bioremediation of hazardous hydrophobic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), is a major environmental concern due to their toxic and carcinogenic properties. Bue to their low solubility in water, the compounds are microbiologically persistent. This work investigates optimal conditions to enhance the biodegradation of phenanthrene in water and soil-slurry systems. Biodegradation tests were performed with three different types of supplements: glucose as a general carbon source, salicylate as an enzyme inducer, and Triton X-100 as a surfactant. The tests indicate that glucose and Triton X-100 were not very effective to increase biodegradation rate, even though the number of microorganisms are highly increased in the case of glucose addition. Salicylate accelerated biodegradation of phenanthrene, but the addition above optimal concentration inhibited microbial growth. Salicylate is considered to be an attractive alternative for the successful bioremediation of PAH-contaminated soil.

  • PDF

지하수내 질산성 질소의 In-situ Bioremediation을 위한 최적 Electron donor 결정에 관한 연구

  • Eo, Seong-Uk;Kim, Yeong;Jeong, Gi-Seop
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.192-195
    • /
    • 2003
  • As a part of our research project for in-situ bioremediation of nitrate contaminated. groundwater, screening studies to determine an effective electron donor (EO) and/or carbon source (CS) such as acetate, ethanol, formate, fumarate, lactate, and propionate were conducted. To evaluate the feasibility for the biological degradation of nitrate, soil microcosm studies using nitrate-contaminated soil and groundwater were performed. The nitrate removal percentage in the order from the highest to the lowest was: formate, fumarate, and ethanol > lactate > propionate. Essentially no nitrate consumption was observed In acetate-fed microcosms. The order of nitrate removal rate from the highest to lowest was fumarate, formate, lactate, ethanol, and propionate. These results suggest that fumarate and formate are promising EDs/CSs for in-situ bioremediation of nitrate - contaminated oxygenated groundwater.

  • PDF

SVE 및 미생물제제를 이용한 유류 오염토양의 현장 복원

  • 박영준;염규진;김선미;이문현;박광진;이영신
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.103-106
    • /
    • 2003
  • This study was conducted to evaluate in-situ bioremediation ability of Bioil-D, microbial material for oil degradation, at a gas station that had been treated by SVE system. TPH concentrations and total contaminated soil volume were rapidly decreased after Bioil-D treatment. The performance of Bioil-D was also estimated based on the observation of microbial population at the soil samples and $CO_2$ concentration produced at the extraction wells. The field study showed a successful work of Bioil-D.

  • PDF

토양의 자연정화능과 다기능성 Colloidal Gas Aphron을 이용한 지하 환경에서의 BTEX 처리기술 개발

  • 박주영;남경필
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.269-272
    • /
    • 2004
  • The use of colloidal gas aphron (CGA), as an external oxygen carrier, provides a promising alternative to promote aerobic bioremediation of BTEX in the subsurface environment. CGA is a stable bubble supported by three surfactant layers and can supply oxygen below the soil surface uniformly due to its plug-flow characteristic. Since CGA has a hydrophobic layer that can act as a partitioning medium for hydrophobic contaminants it is known to facilitate desorption of soil-sorbed contaminants. In addition, bioaugmentation and biostimulation are possibly achieved by using CGA when generated from a solution containing BTEX-degrading microorganisms and appropriate nutrients. In this study, we presented the physico-chemical characteristics of CGA generated from a solution composed of microorganisms and nutrients. The applicability of CGA as an in situ aerobic bioremediation technology of BTEX will be further evaluated.

  • PDF

Laboratory-scale Microcosm Studies in Assessing Enhanced Bioremediation Potential of BTEX and MTBE under Various Electron Acceptors in Contaminated Soil

  • 오인석;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.368-371
    • /
    • 2003
  • Accidental release of petroleum products from underground storage tank(USTs) is one of the most common causes of groundwater contamination. BTEX is the major components of fuel oils, which are hazardous substances regulated by many nations. In addition to BTEX, other gasoline consituents such as MTBE(methyl-t-buthyl ether), anphthalene are also toxic to humans. Natual attenuation processes include physic, chemical, and biological trasformation. Aerobic and anaerobic biodegradation are believed to be the major processes that account for both containment of the petroleum-hydrocarbon plum and reduction of the contaminant concentrations. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. However, Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Anaerobic processes refer to a variety of biodegradation mechanisms that use nitrate, ferric iron, sulfate, and carbon dioxide as terminal electron accepters. The objectives of this study was to conduct laboratory-scale microcosm studies in assessing enhanced bioremediation potential of BTEX and MTBE under various electron accepters(aerobic, nitrate, ferric iron, sulfate) in contaminated Soil. these results suggest that, presents evidence and a variety pattern of the biological removal of aromatic compounds under enhanced nitrate-, Fe(III)-, sulfate-reducing conditions.

  • PDF

Electrokinetic Injection characteristics of Ions into Kaolinite and Sand for Bioremediation (토질에 따른 Electrokinetic 이온 주입 특성)

  • 한상재;이호창;김수삼
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 2002
  • Nowdays electrokinetic technique has been applied to supply nutrients and TEAs for in-situ bioremediation. However the Injection characteristics under electrical field have not been examined in various soil types. Therefore, The characteristics of electrokinetic injection into kaolinite and sand are investigated. During the 17 d of processing, There was a gradual increase in ammonium (nutrient) concentration from the anode compartment. However the ammonium concentration at the cathode increased beyond that at the anode in sand. A relatively constant profile of sulfate (TEA) was achieved specifically, the final sulfate concentration in each specimen were different. When EK injection technique is implemented in field, the most important consideration should be an assessment of the injection characteristics with respect to the soil types.