• Title/Summary/Keyword: soil additives

Search Result 125, Processing Time 0.026 seconds

Assessing Effects of Calcium Chloride (CaCl2) Deicing Salt on Salt Tolerance of Miscanthus sinensis and Leachate Characterizations (염화칼슘 제설제 처리농도에 따른 참억새의 내염성 및 침출수 평가)

  • Ju, Jin-Hee;Yang, Ji;Park, Sun-Young;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.4
    • /
    • pp.61-67
    • /
    • 2019
  • The purpose of this research is to evaluate the salt tolerance of the Miscanthus sinensis and to characterize the content of pigments in the leachate in relation to calcium chloride ($CaCl_2$) deicing salt. Miscanthus sinensis were cultured at five different concentrations of calcium chloride deicing salt, 0, 1, 2, 5, and $10g{\cdot}L^{-1}$ (referred to Cont. C1, C2, C5, and C10) for four months. The salt tolerance and leachate while growing Miscanthus sinensis on soil which was artificially contaminated by calcium chloride deicing salt. Soil chemical properties (pH, E.C., $Ca^{2+}$, $Na^+$, $K^+$, and $Mg^{2+}$) and plant growth parameters (plant height, leaf length, leaf width, number of leaves, shoot fresh weight, root fresh weight, shoot dry weight, an root dry weight) were evaluated. Soil pH decreased, while electrical conductivity significantly decreased ($p{\leq}0.05$) with a higher concentration of deicing salt $0g{\cdot}L^{-1}$ (Cont.). The increase in the concentration of chloride-based exchangeable cations, along with the increase in the deicing salt treatments, were observed in $Ca^{2+}$ > $Na^+$ > $K^+$ > $Mg^{2+}$. Notably the $Ca^{2+}$ exchangeable cations were 83~90% higher than the others. The growth of Miscanthus sinensis significantly increased ($p{\leq}0.05$) with the concentration of deicing salt higher than $1g{\cdot}L^{-1}$ (C1) when compared to 0 g/L (Cont.), except for the $10g{\cdot}L^{-1}$ (C10) treatment. The results determined that the contamination of soil by deicing salt could negatively impact the soil and Miscanthus sinensis was a tolerant species for the deicing salts. Further research will be focused on soil improvement additives and the stable stimulated plant growth of Miscanthus sinensis and a formulation on that basis for the soil-plant continuum.

A Study on the Application of Chemical Grouting Method for Aging Reservoir Reinforce According to the Change of Binder and Using Water (결합재 및 사용수 변화에 따른 노후저수지 보강용약액주입공법 적용에 관한 연구)

  • Song, Sang-Hwon;Seo, Se-Gwan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.4
    • /
    • pp.45-52
    • /
    • 2019
  • Chemical grouting method is mainly used for construction of dams and reservoirs, stabilization and reinforcement of slopes, reinforcement of soft grounds such as embankments, dredging and landfills, the order of earthquake response method, and the reinforcement of structures. Recently, it is widely applied in construction sites such as highways, airfields, high-speed railways, subsea facilities, port construction works, tunnels, and subway works. As such, the demand for grouting continues to increase. The development of the grouting method was focused on increasing the strength of the ground, and the development of the chemical additives, the injection device, and the stirring device were mainly performed. But ordinary portland cement used for grouting is a product that consumes natural resources such as limestone, generates a large amount of greenhouse gases, consumes a large amount of energy sources, and it is time to develop products and new methods to replace them. In this study, Ordinary Portland Cement and New Grouting Binder (circulating fluidized bed boiler fly and blast furnace slag) were compared and analyzed by the following test. Homo-gel strength and homo-gel time, water quality analysis of the water used and soil contamination process tests of homo-gel samples were performed. In the case of NGB, when Using water is used as the reservoir water, the strength measured smaller than that of the other water. However, it shows about 2.5 times greater than the homo-gel compressive strength applied to OPC (7-day, reservoir water), so there is no problem with water quality when applied.

Physical Properties of Shock-Absorbing Materials Made of Pulp Fibers for Packaging (포장완충재용 펄프 섬유 압출물의 물리적 특성)

  • Song, Dae-Bin;Kim, Chul-Hwan;Jung, Hyo-Suk;Lee, Young-Min;Kim, Jae-Ok;Kim, Gyeong-Yun;Park, Chong-Yawl
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.41-49
    • /
    • 2005
  • Styrofoam as shock-absorbing materials for packaging has been regarded as one of non-biodegradable products leading to soil contamination at a landfill and release of dioxine during its incineration. For avoiding severe burdens on our environments by styrofoam, it must be replaced by environment-friendly materials. In order to evaluate availability of pulp fibers as a substitute for styrofoam, various extrusion processes were applied for making optimal biodegradable products. Then thermomechanical pulp fibers made of Pinus radiata and Pinus rigida were uniformly mixed with other additives such as starch and polyvinyl alcohol prior to expansion. The physical properties of the final products were examined by measuring expansion efficiency, compression strength, and elastic modulus. Wheat starch played a key role to maintain optimal flowing conditions within the barrel of the extruder irrespective of addition of soluble starch and polyvinyl alcohol. However, as the amounts of wheat starch in raw-materials increased, the elastic modulus of the expanded materials greatly increased. High elastic modulus is not suitable as shock-absorbing products for packaging. Thus the wheat starch must be added at a minimum if possible, that is, below 20% based on oven-dried weight of pulp fibers. the elastic modulus of the expanded products was decreased as their moisture contents increased. For the products containing 20% wheat starch, the lowest elastic modulus, 844.64 kPa was obtained under 10% of the moisture content. This was similar to that of styrofoam.

Characteristics of Ash (Coal, Wood and Rice Hull) and Its Potential Use as an Additive in Poultry Manure for Protecting the Environment (재(석탄, 목재, 왕겨재)의 특성과 환경보호를 위하여 계분의 첨가 가능성에 관한 연구)

  • Nahm K.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.1
    • /
    • pp.65-80
    • /
    • 2006
  • Ash amendment to manure holds potential as a method to neutralize manure for reducing odor and reduce phosphorus (P) solubility in runoff from fields where manure has been applied. This review focuses on the literature published about ash characteristics and their environmental uses. There is no uniform physico-chemical definition of the selected ashes (coal fly ash-CFA, wood ash-WA, and rice hull ash-RHA) used in various studies. These ashes vary greatly in their acidity (pH<6.0) or alkalinity (pH>12.5) based on the conditions at which they were farmed and the composition of the ash source. CFA amendment to manure reduced manure-P solubility and application of CFA amended manure to agricultural soils is a method to improve water quality WA may prove to be a valuable manure odor control amendment since WA contains a high level of carbon. A major biomass source is rice hull (husk) which provides an ash source (RHA). The .ice hull and RHA are sources of silica, compromising about 20% and 60%, respectively. So far research has been directed at the use of CFA, WA and RHA as soil amendments, but there is potential use of these materials as manure additives to sequester P and reduce odors.

In-vitro Anti-thrombosis Activity of Sphagnum palustre (수태의 항혈전 활성)

  • Lee, Ye-Seul;Jung, Su-Jin;Kim, Mi-Sun;Sohn, Ho-Yong;Jung, In-Chang
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.417-421
    • /
    • 2014
  • Sphagnum palustre (SP), a species of moss belong to the Sphagnaceae family, is used as a dwarfed potted plant, in diapers, bandages, and soil additives. Although, SP can be found all over the world and is very cheap, the study of SP components and bioactivities are still at a rudimentary stage. In this study, the hot-water extract of SP (HWSP) and its subsequent organic solvent fractions were prepared, and their in-vitro anti-thrombosis activities were evaluated. The results showed that the water residue of HWSP has a strong anti-coagulation activity with significant extensions of thrombin time, and platelet aggregation activity. Our results suggest that the SP has the potential to be a novel resource for anti-thrombosis agents. This report provides the first evidence of the anti-thrombosis activity of SP.

Somatic embryogenesis and in vitro plant regeneration in moth bean [Vigna aconitifolia (Jacq.) Marechal]: a recalcitrant grain legume

  • Choudhary, Kailash;Singh, M.;Rathore, M.S.;Shekhawat, N.S.
    • Plant Biotechnology Reports
    • /
    • v.3 no.3
    • /
    • pp.205-211
    • /
    • 2009
  • An efficient in vitro regeneration protocol for moth bean [Vigna aconitifolia (Jacq.) Marechal] via somatic embryogenesis has been developed. Embryogenic callus cultures were established from the cotyledonary node as explant on semi-solid Murashige and Skoog (MS) medium supplemented with $0.75mg\;1^{-1}$ 2,4-dichlorophenoxyacetic acid (2,4-D) and $1.5mg\;1^{-1}$ 6-benzylaminopurine (BA) and with various additives ($50mg\;1^{-1}$ ascorbic acid and $25mg\;1^{-1}$ each of adenine sulphate, citric acid and $_L-arginine$). Numerous somatic embryos differentiated on MS basal nutrient medium supplemented with $0.25mg\;1^{-1}$ 2,4-D and $0.5mg\;1^{-1}$ of kinetin (Kin). Sustained cell division resulted in the formation of cell aggregates, which progressed to the globular- and heart-shaped somatic embryos and then, if they differentiated properly, to the torpedo shape and cotyledonary stages. The transfer of embryos onto fresh MS basal medium containing $0.2mg\;1^{-1}$ BA and $2.0mg\;1^{-1}$ gibberellic acid enabled the embryos to achieve complete maturation and germination. More than 80% of somatic embryos were converted into true-to-type fertile plants. In vitro-regenerated plantlets with well-developed roots were successfully hardened in a greenhouse and established in soil.

Nutritional Effects of Paper Board Sludge on the Garlic(Allium sativum L.) (마늘에 대(對)한 판지(板紙) SLUDGE의 영양학적(營養學的) 연구(硏究))

  • Kim, Moon-Kyu;Chang, Ki-Woon;Choi, Woo-Young;Lee, Chang-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.3
    • /
    • pp.208-213
    • /
    • 1990
  • The parer board sludge (PBS) itself and compost sludge manure (CSM) made of sawdust, fowl droppings, and urea to the PBS were treated to garlic to determine the effects of growing characters, yield components, and nutritional compounds in the plants. 1. The differences of the rate of missing plants were not found between control and treatments. 2. Plant height of the garlic increased in the treatments of PBS and CSM rather than control. Numbers of leaf, and width of the largest leaf and stem did not have any distinct tendency to change. 3. Total weight and weight of the above ground part were highest in the treatment of 1,600kg/10a PBS, and CS-2 treatment mixed with high portion of additives. The weight of underground part and yield increased with the increase of paper board sludge, and highest in CS-2 treatment. 4. The contents of nitrogen in the plant were higher in the treatments of PBS and CSM than control. And CSM treatments had generally higher concentrations than PBS treatments. 5. In conclusion, PBS itself had nutritional effects. The PBS could be used to some crops after fermentation with adequate additives.

  • PDF

A Study of Ground Tire as a Sorption Media for the Passive Treatment Wall: Sorption of MTBE (Methyl tertiary Butyl Ether) (파쇄 폐타이어를 이용한 반응벽체에 관한 연구: 폐타이어 내의 MTBE(Methyl tertiary Butyl Ether)흡착 중심)

  • 박상현;이재영;최상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.37-44
    • /
    • 2003
  • Fuel oxygenates, such as Methyl tertiary Butyl Ether (MTBE) is additive in gasoline used to reduce air pollution. Gasoline components and fuel additives can leak: form underground storage tanks. MTBE is far more water soluble than gasoline hydrocarbons like BTEX then it travels at essentially the same velocity as groundwater. MTBE in drinking water causes taste and odor problems. Therefore, the purpose of the this study is to examine the ability of ground tire to sorb MTBE in water. The study consisted of running both batch and column tests to determine the sorption capacity, the required sorption equilibration time, and the flow through utilization efficiency of ground tire. The batch test result indicated that ground tire can attain equilibrium sorption capacities about 0.5 mg of MTBE. The result of column test indicate that ground tire has on the 36% utilization rate. Finally, it is clear that ground tire represented an attractive and relatively inexpensive sorption medium for a MTBE. Authors thought that to determine the economic costs of ground tire utilization, the cost to sorb a given mass of contaminant by ground tire will have to be compared to currently accepted sorption media. The cost comparison will also have to include regeneration and disposal cost.

Development of Multi-functional Mulch Papers and Evaluation of Their Performance-Studies for Reducing the Basis Weight of Mulch Paper- (다기능성 멀칭지의 개발 및 적용성 평가(제l보)-멀칭지의 저평량화를 위한 연구-)

  • Lee, Hak-Lae;Ryu, Jung-Yong;Youn, Hye-Jung;Joo, Sung-Bum;Park. Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.38-45
    • /
    • 1998
  • Soil and water contamination caused by the abundant use of agricultural chemicals including herbicides and fertilizers draws public concerns since these chemicals may pollute the agricultural lands as well as the food products grown on these lands. As a method to reduce the use of agricultural chemicals mulching with thin plastic film has been commonly practised for many years. Although use of the plastic film for mulching is very effective in preventing the growth of weed, it is almost impossible to remove all of the plastic film from the agricultural land and the remaining film eventually contaminates the soils. Therefore, it is very imperative to develop a mulching material that decomposes completely to prevent soil pollution problems and to enhance the competitive edge of domestic agriculture. Mulch papers are believed to have many positive characteristics in preventing problems caused by the plastic mulch film since it decomposes completely after use. However, the basis weight of mulch papers needs to be reduced to improve its handling properties and to reduce the raw material costs of pulps. In this paper the possibilities of using domestic old corrugated containers in producing mulch papers were examined. Also use of unbleached softwood kraft pulps and dry strength additives were exploited along with two-layered sheet forming technology in decreasing the basis weight of the mulch paper. Results showed that reduction of 20g/$m^2$ of basis weight of mulch paper was possible by the appropriate raw material selection and application of strength resin. To use the mulch papers in paddy fields, however, further research to improve its durability should be pursued.

  • PDF

Effects of Types of Water Media and Concentration of Additives on Rooting and Survival of Ternstroemia japonica after Transplanting Cuttings (물배지의 종류 및 첨가물의 농도가 후피향나무 삽목묘의 발근 및 이식 후 활착에 미치는 영향)

  • Kang, Hyeon-Woo;Kim, Min-Soo;Kim, Dong-Uk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.5
    • /
    • pp.141-152
    • /
    • 2011
  • Cuttings based on water media are relatively low-cost and easy to manage compared to those based on soil media. Nevertheless, species that root out in water media are very few. Water-medium rooted cuttings are not widely used. In water media, the survival rate of cuttings is high, but in many cases, they only form callus while not rooting. If cuttings with callus formed in a water medium were to root and survive after being transplanted in soil, water-medium cuttings could be used as an important means of propagating landscape tree species. In this study, cuttings of Ternstroemia japonica having various reactions to water media were soaked in different types of water media. Their callus formation and rooting conditions were analyzed. The water-medium cutting swere then transplanted in soil, and conditions for their survival were examined. The study concluded: 1. Cuttings that only formed callus in water media were able to root and survive after being transplanted. 2. Cuttings with satisfactory callus formation showed more satisfactory survival conditions than those with unsatisfactory callus formation. 3. Cuttings rooted in water media showed a high survival rate of 96.6% after being transplanted. 4. Water-medium cutting of Ternstroemia japonica proved to be more effective in Late July or August than in late June. 5. Cuttings pre-treated in 50ppm-IBA for 24 hours showed better survival conditions than those that were not pre-treated inIBA. 6. Cuttings pre-treated in 50ppm-IBA for 24 hours and soaked in water media with 0.02% atonic, 0.02% polyoxin, and 0.01% polyoxin showed a rooting and survival rate of 80 to 85%. Regardless their low rooting rate, water-medium cuttings can show a high survival rate when these factors are considered: proper cutting time, plant hormone treatment, and types of water media. Accordingly, water-medium cuttings will emerge as major means of propagating landscape tree species that require small volumes of multi-species.