DOI QR코드

DOI QR Code

Assessing Effects of Calcium Chloride (CaCl2) Deicing Salt on Salt Tolerance of Miscanthus sinensis and Leachate Characterizations

염화칼슘 제설제 처리농도에 따른 참억새의 내염성 및 침출수 평가

  • Ju, Jin-Hee (Dept. of Green Technology Convergence, Konkuk University) ;
  • Yang, Ji (Dept. of Green Technology Convergence Graduate School, Konkuk University) ;
  • Park, Sun-Young (Dept. of Green Technology Convergence Graduate School, Konkuk University) ;
  • Yoon, Yong-Han (Dept. of Green Technology Convergence, Konkuk University)
  • 주진희 (건국대학교 녹색기술융합학과) ;
  • 양지 (건국대학교 대학원 녹색기술융합학과) ;
  • 박선영 (건국대학교 대학원 녹색기술융합학과) ;
  • 윤용한 (건국대학교 녹색기술융합학과)
  • Received : 2019.07.12
  • Accepted : 2019.08.26
  • Published : 2019.08.31

Abstract

The purpose of this research is to evaluate the salt tolerance of the Miscanthus sinensis and to characterize the content of pigments in the leachate in relation to calcium chloride ($CaCl_2$) deicing salt. Miscanthus sinensis were cultured at five different concentrations of calcium chloride deicing salt, 0, 1, 2, 5, and $10g{\cdot}L^{-1}$ (referred to Cont. C1, C2, C5, and C10) for four months. The salt tolerance and leachate while growing Miscanthus sinensis on soil which was artificially contaminated by calcium chloride deicing salt. Soil chemical properties (pH, E.C., $Ca^{2+}$, $Na^+$, $K^+$, and $Mg^{2+}$) and plant growth parameters (plant height, leaf length, leaf width, number of leaves, shoot fresh weight, root fresh weight, shoot dry weight, an root dry weight) were evaluated. Soil pH decreased, while electrical conductivity significantly decreased ($p{\leq}0.05$) with a higher concentration of deicing salt $0g{\cdot}L^{-1}$ (Cont.). The increase in the concentration of chloride-based exchangeable cations, along with the increase in the deicing salt treatments, were observed in $Ca^{2+}$ > $Na^+$ > $K^+$ > $Mg^{2+}$. Notably the $Ca^{2+}$ exchangeable cations were 83~90% higher than the others. The growth of Miscanthus sinensis significantly increased ($p{\leq}0.05$) with the concentration of deicing salt higher than $1g{\cdot}L^{-1}$ (C1) when compared to 0 g/L (Cont.), except for the $10g{\cdot}L^{-1}$ (C10) treatment. The results determined that the contamination of soil by deicing salt could negatively impact the soil and Miscanthus sinensis was a tolerant species for the deicing salts. Further research will be focused on soil improvement additives and the stable stimulated plant growth of Miscanthus sinensis and a formulation on that basis for the soil-plant continuum.

본 연구는 염화칼슘($CaCl_2$) 처리농도에 따른 토양침출수 및 참억새의 생육 특성을 평가해 제설제 살포로 인한 토양의 화학적 변화를 분석하고, 참억새(Miscanthus sinensis)의 내염성을 살펴봄으로써 제설제의 대표적 피해지역인 가로변 식생관리방안에 적용하고자 한다. 염화칼슘 처리농도는 0(Cont.), 1(C1), 2(C2), 5(C5), $10g{\cdot}L^{-1}$(C10) 등 총 5가지로 수용액을 조제해 참억새를 정식한 화분 토양에 1회 0.2L씩 2주 간격으로 총 6회 관주한 후 생육과 침출수의 특징을 분석하였다. 참억새를 식재한 토양침출수의 산도는 염화칼슘 처리농도가 높을수록 점차 완만하게 낮아진 반면, 전기전도도는 유의적으로 급증하는 경향을 보였다. 또한 염화물계 치환성 양이온의 함량은 전반적으로 증가하였으며, 치환성 칼슘 > 칼륨> 나트륨> 마그네슘 순으로 치환성 칼슘이 다른 이온에 비해 약 83~90% 높은 수치를 보였다. 참억새의 초장은 C10 처리구를 제외하고, C1~C5 처리구까지 유의적인 차이가 없었으나 엽장은 C5 처리구부터, 엽폭은 농도가 증가할수록 좁아지는 경향이 뚜렷했다. 반면, 엽수는 C10 처리구를 제외하고 C1~C5 처리구가 대조구에 비해 많아졌다. 참억새의 지상부와 지하부 생체중과 건물중 모두 C10 처리구를 제외하고 대조구에 비해 염화칼슘 처리농도가 높을수록 증가되었으며, 지상부 보다는 지하부의 증가세가 높았다. 이러한 결과로 볼 때, 가로변 염화칼슘 제설제의 지속적인 살포는 토양 내 산도 및 전기전도도, 염화물계 치환성 양이온에도 영향을 미칠 수 있음을 예측할 수 있다. 또한 참억새는 C10 처리구를 제외하고, 대조구에 비해 지상부 및 지하부의 생육이 양호해 제설제로 오염된 가로변 토양에서도 현장적용이 가능할 것으로 본다.

Keywords

References

  1. Arduini, L., L. Ercoli, M. Mariotti and A. Masoni(2006) Response of Miscanthus to toxic cadmium applications during the period of maximum growth. Environ. Exp. Bot. 55: 29-40. https://doi.org/10.1016/j.envexpbot.2004.09.009
  2. Agnieszka, P., D. Franciszek, K. Janusz, T. Maria, M. Maciej, G. Krzysztof and Z. Grzegorz(2014) Tolerance of Miscanthus $\times$ giganteus to salinity depends on initial weight of rhizomes as well as high accumulation of potassium and proline in leaves. Ind. Crop. Prod. 52: 278-285. https://doi.org/10.1016/j.indcrop.2013.10.041
  3. Choung, Y. S.(1993) Comparative study on the growth dynamics of some grasses. Korean J. Ecol. 16(3): 329-339.
  4. Choung, Y. S.(2002) Distribution and performance of Miscanthus sinensis community in Mt. Mindung, Kangwon Province, Korea. Korean J. Ecol. 25(1): 33-37. https://doi.org/10.5141/JEFB.2002.25.1.033
  5. Choi, H. S., J. S. Hong, F. K. F. Geronimo and L. H. Kim(2018) Implications of $CaCl_2$ application to plants in LID facilities. Water Science and Technology 78(5): 1045-1053. https://doi.org/10.2166/wst.2018.364
  6. Je, S. M. and S. H. Kim(2017) Growth and physiological responses of Pinus strobus to $CaCl_2$. Journal of the Korean Institute of Landscape Architecture 45(3): 1-8. https://doi.org/10.9715/KILA.2017.45.1.001
  7. Je, S. M. and S. H. Kim(2016) Effect of $CaCl_2$ on gas exchange and stomatal responses in the leaves of Prunus serrulata. J. Korean For. Soc. 105(3): 303-308. https://doi.org/10.14578/jkfs.2016.105.3.303
  8. Ju, J. H., J. Y. Park, H. Xu, E. Y. Lee, K. H. Hyun, J. S. Jung, E. Y. Choi and Y. H. Yoon(2016a) Growth and physiological response of three evergreen shrubs to de-icing salt ($CaCl_2$) at different concentration in winter: Focusing on Euonymus japonica, Rhodoendron indicum, and Buxus korean. Journal of the Korean Institute of Landscape Architecture 44(2): 122-129. https://doi.org/10.9715/KILA.2016.44.2.122
  9. Ju, J. H., H. Xu, J. Y. Park, E. Y. Choi and Y. H. Yoon(2016b) Evaluation of salt tolerance of Liriope platyphylla and Pachysandra terminalis to deicing salt ($CaCl_2$) concentration in winter. Korean J. Environ. Ecol. 30(4): 651-657. https://doi.org/10.13047/KJEE.2016.30.4.651
  10. Kim, M. H., S. H. Song, E. S. Min and I. S. Jang(2000) Heavy metal pollutions of the top soil, plants and stream water from the serpentinite area, Chungnam. Korean J. Environ. Ecol. 14(2): 119-126.
  11. Kim, K. R., H. H. Lee, C. W. Jung, J. Y. Kang, S. N. Park and K. H. Kim(2002) Investigation of soil contamination of some major roadsides in Seoul II. Major roadsides in Gangdong-, Gwangjin-, Nowon-, Seodaemum- and Seongdong-gu. J. Korean Soc. Agri. Chem. Biotechnol. 45(2): 92-96.
  12. Kim, L. S. and D. W. Lee(2014) Effect of chloride-deicers on growth of wheat, barley and spinach. Korean J. Environ. Agric. 33(4): 350-357. https://doi.org/10.5338/KJEA.2014.33.4.350
  13. Kwon, M. Y., S. H. Kim and J. H. Sung(2014) The responses of growth and physiological traits of Acer triflorum on calcium chloride ($CaCl_2$) concentration. Korean J. Environ Ecol. 28(5): 500-509. https://doi.org/10.13047/KJEE.2014.28.5.500
  14. Lee, J. S.(2004) A study on change of an accumulated organic matter contents according to successional stage on temperate grassland. Korean J. Environ. Biol. 22(3): 381-386.
  15. Li, F., Y. Zhang, Z. Fan and K. Oh(2015) Accumulation of de-icing salts and its short-term effect on metal mobility in urban roadside soils. Bull. Environ. Contm. Toxiclo. 94: 525-531. https://doi.org/10.1007/s00128-015-1481-0
  16. Liang, W., X. Ma, P. Wan and L. Liu(2018) Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commu. 495: 286-291. https://doi.org/10.1016/j.bbrc.2017.11.043
  17. Mun, H. T., B. K. Park and J. H. Kim(1997) Response of plants and changes of soil properties to added acid-soil ameliorants. Korean J. Ecol. 20(1): 43-49.
  18. Nisha, K., Y. Kuldeep, B. Neetu and A. Ashok(2013) AM fungi ameliorates growth, yield and nutrient uptake in Cicer arietinum L. under salt stress. Russian Agricultural Science 39(4): 321-329. https://doi.org/10.3103/S1068367413040058
  19. Park, S. G. and S. H. Choi(2018) A study on the growth environment characteristics of the Miscanthus sinensis community and the presumed economic value of theMiscanthus sinensis community landscape conservation. Proc. Korean Soc. Environ. Ecol. Con. 28(1): 29-30.
  20. Shin, S. S., S. D. Park, H. S. Kim and K. S. Lee(2010) Effect of calcium chloride and eco-friendly deicer on the plant growth. Korean Society of Environmental Engineers 32(5): 487-498.
  21. Stephanie, L. N. and D. B. David(2005) Alleviation of salt-induced stress on seed emergence using soil additives in a greenhouse. Plant and Soil 268: 303-307. https://doi.org/10.1007/s11104-004-0313-5
  22. Soh, J. W., S. Y. Soh and S. Y. Nam(2015) pH variance model depending on phosphate ion form. Korean J. Hortic. Sci. Technol. 33(6): 854-859. https://doi.org/10.7235/hort.2015.15058
  23. Song, H. S. and W. Cho(2007) Diversity and sonation of vegetation related micro-topography in Sinduri coastal dune, Korea. Kor. J. Env. Eco. 21(3): 290-298.
  24. Sung, J. H., S. M. Je, S. H. Kim and Y. K. Kim(2009) Effect of calcium chloride ($CaCl_2$) on the characteristics of photosynthetic apparatus, stomatal conductance, and fluorescence image of the leaves of Cornus kousa. Korean Journal of Agricultural and Forest Meteorology 11(4): 143-150. https://doi.org/10.5532/KJAFM.2009.11.4.143
  25. Sung, J. H., S. M. Je, S. H. Kim and Y. K. Kim(2010) Effect of calcium chloride ($CaCl_2$) on chlorophyll fluorescence image and photosynthetic apparatus in the leaves of Prunus sargentii. Jour. Korean For. Soc. 99(6): 922-928.
  26. The Korean Institute of Landscape Architecture(2013) Landscape Architecture Design Standard. Seoul: Kimoondang.
  27. Willam, R. T., G. Bahram and P. Nandana(2015) Road slat application planning tool for winter de-icing operations. J. Hydrol. 524: 401-410. https://doi.org/10.1016/j.jhydrol.2015.03.004