• Title/Summary/Keyword: software algorithms

Search Result 1,093, Processing Time 0.03 seconds

A slide reinforcement learning for the consensus of a multi-agents system (다중 에이전트 시스템의 컨센서스를 위한 슬라이딩 기법 강화학습)

  • Yang, Janghoon
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.226-234
    • /
    • 2022
  • With advances in autonomous vehicles and networked control, there is a growing interest in the consensus control of a multi-agents system to control multi-agents with distributed control beyond the control of a single agent. Since consensus control is a distributed control, it is bound to have delay in a practical system. In addition, it is often difficult to have a very accurate mathematical model for a system. Even though a reinforcement learning (RL) method was developed to deal with these issues, it often experiences slow convergence in the presence of large uncertainties. Thus, we propose a slide RL which combines the sliding mode control with RL to be robust to the uncertainties. The structure of a sliding mode control is introduced to the action in RL while an auxiliary sliding variable is included in the state information. Numerical simulation results show that the slide RL provides comparable performance to the model-based consensus control in the presence of unknown time-varying delay and disturbance while outperforming existing state-of-the-art RL-based consensus algorithms.

A Comparative Study on Game-Score Prediction Models Using Compuational Thinking Education Game Data (컴퓨팅 사고 교육 게임 데이터를 사용한 게임 점수 예측 모델 성능 비교 연구)

  • Yang, Yeongwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.529-534
    • /
    • 2021
  • Computing thinking is regarded as one of the important skills required in the 21st century, and many countries have introduced and implemented computing thinking training courses. Among computational thinking education methods, educational game-based methods increase student participation and motivation, and increase access to computational thinking. Autothinking is an educational game developed for the purpose of providing computational thinking education to learners. It is an adaptive system that dynamically provides feedback to learners and automatically adjusts the difficulty according to the learner's computational thinking ability. However, because the game was designed based on rules, it cannot intelligently consider the computational thinking of learners or give feedback. In this study, game data collected through Autothikning is introduced, and game score prediction that reflects computational thinking is performed in order to increase the adaptability of the game by using it. To solve this problem, a comparative study was conducted on linear regression, decision tree, random forest, and support vector machine algorithms, which are most commonly used in regression problems. As a result of the study, the linear regression method showed the best performance in predicting game scores.

A Novel Approach to COVID-19 Diagnosis Based on Mel Spectrogram Features and Artificial Intelligence Techniques

  • Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.195-207
    • /
    • 2022
  • COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.

3D Vision Implementation for Robotic Handling System of Automotive Parts (자동차 부품의 로봇 처리 시스템을 위한 3D 비전 구현)

  • Nam, Ji Hun;Yang, Won Ock;Park, Su Hyeon;Kim, Nam Guk;Song, Chul Ki;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.60-69
    • /
    • 2022
  • To keep pace with Industry 4.0, it is imperative for companies to redesign their working environments by adopting robotic automation systems. Automation lines are facilitating the latest cutting-edge technologies, such as 3D vision and industrial robots, to outdo competitors by reducing costs. Considering the nature of the manufacturing industry, a time-saving workflow and smooth linkwork between processes is vital. At Dellics, without any additional new installation in the automation lines, only a few improvements to the working process could raise productivity. Three requirements are the development of gripping technology by utilizing a 3D vision system for the recognition of the material shape and location, research on lighting projectors to target long distances and high illumination, and testing of algorithms/software to improve measurement accuracy and identify products. With some of the functional requisites mentioned above, improved robotic automation systems should provide an improved working environment to maximize overall production efficiency. In this article, the ways in which such a system can become the groundwork for establishing an unmanned working infrastructure are discussed.

Naval Ship Evacuation Path Search Using Deep Learning (딥러닝을 이용한 함정 대피 경로 탐색)

  • Ju-hun, Park;Won-sun, Ruy;In-seok, Lee;Won-cheol, Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.385-392
    • /
    • 2022
  • Naval ship could face a variety of threats in isolated seas. In particular, fires and flooding are defined as disasters that are very likely to cause irreparable damage to ships. These disasters have a very high risk of personal injury as well. Therefore, when a disaster occurs, it must be quickly suppressed, but if there are people in the disaster area, the protection of life must be given priority. In order to quickly evacuate the ship crew in case of a disaster, we would like to propose a plan to quickly explore the evacuation route even in urgent situations. Using commercial escape simulation software, we obtain the data for deep neural network learning with simulations according to aisle characteristics and the properties and number of evacuation person. Using the obtained data, the passage prediction model is trained with a deep learning, and the passage time is predicted through the learned model. Construct a numerical map of a naval ship and construct a distance matrix of the vessel using predicted passage time data. The distance matrix configured in one of the path search algorithms, the Dijkstra algorithm, is applied to explore the evacuation path of naval ship.

Design of Scenario Creation Model for AI-CGF based on Naval Operations, Resources Analysis Model(I): Evolutionary Learning (해군분석모델용 AI-CGF를 위한 시나리오 생성 모델 설계(I): 진화학습)

  • Hyun-geun, Kim;Jung-seok, Gang;Kang-moon, Park;Jae-U, Kim;Jang-hyun, Kim;Bum-joon, Park;Sung-do, Chi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.617-627
    • /
    • 2022
  • Military training is an essential item for the fundamental problem of war. However, there has always been a problem that many resources are consumed, causing spatial and environmental pollution. The concepts of defense modeling and simulation and CGF(Computer Generated Force) using computer technology began to appear to improve this problem. The Naval Operations, Resources Analysis Model(NORAM) developed by the Republic of Korea Navy is also a DEVS(Discrete Event Simulation)-based naval virtual force analysis model. The current NORAM is a battle experiment conducted by an operator, and parameter values such as maneuver and armament operation for individual objects for each situation are evaluated. In spite of our research conducted evolutionary, supervised, reinforcement learning, in this paper, we introduce our design of a scenario creation model based on evolutionary learning using genetic algorithms. For verification, the NORAM is loaded with our model to analyze wartime engagements. Human-level tactical scenario creation capability is secured by automatically generating enemy tactical scenarios for human-designed Blue Army tactical scenarios.

ON THE SCALED INVERSE OF (xi - xj) MODULO CYCLOTOMIC POLYNOMIAL OF THE FORM Φps (x) OR Φpsqt (x)

  • Cheon, Jung Hee;Kim, Dongwoo;Kim, Duhyeong;Lee, Keewoo
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.621-634
    • /
    • 2022
  • The scaled inverse of a nonzero element a(x) ∈ ℤ[x]/f(x), where f(x) is an irreducible polynomial over ℤ, is the element b(x) ∈ ℤ[x]/f(x) such that a(x)b(x) = c (mod f(x)) for the smallest possible positive integer scale c. In this paper, we investigate the scaled inverse of (xi - xj) modulo cyclotomic polynomial of the form Φps (x) or Φpsqt (x), where p, q are primes with p < q and s, t are positive integers. Our main results are that the coefficient size of the scaled inverse of (xi - xj) is bounded by p - 1 with the scale p modulo Φps (x), and is bounded by q - 1 with the scale not greater than q modulo Φpsqt (x). Previously, the analogous result on cyclotomic polynomials of the form Φ2n (x) gave rise to many lattice-based cryptosystems, especially, zero-knowledge proofs. Our result provides more flexible choice of cyclotomic polynomials in such cryptosystems. Along the way of proving the theorems, we also prove several properties of {xk}k∈ℤ in ℤ[x]/Φpq(x) which might be of independent interest.

Performance Analysis of Noisy Group Testing for Diagnosis of COVID-19 Infection (코로나19 진단을 위한 잡음 그룹검사의 성능분석)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.117-123
    • /
    • 2022
  • Currently the number of COVID-19 cases is increasing rapidly around the world. One way to restrict the spread of COVID-19 infection is to find confirmed cases using rapid diagnosis. The previously proposed group testing problem assumed without measurement noise, but recently, false positive and false negative cases have occurred during COVID-19 testing. In this paper, we define the noisy group testing problem and analyze how much measurement noise affects the performance. In this paper, we show that the group testing system should be designed to be less susceptible to measurement noise when conducting group testing with a low positive rate of COVID-19 infection. And compared with other developed reconstruction algorithms, our proposed algorithm shows superior performance in noisy group testing.

Machine Learning Algorithm Accuracy for Code-Switching Analytics in Detecting Mood

  • Latib, Latifah Abd;Subramaniam, Hema;Ramli, Siti Khadijah;Ali, Affezah;Yulia, Astri;Shahdan, Tengku Shahrom Tengku;Zulkefly, Nor Sheereen
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.334-342
    • /
    • 2022
  • Nowadays, as we can notice on social media, most users choose to use more than one language in their online postings. Thus, social media analytics needs reviewing as code-switching analytics instead of traditional analytics. This paper aims to present evidence comparable to the accuracy of code-switching analytics techniques in analysing the mood state of social media users. We conducted a systematic literature review (SLR) to study the social media analytics that examined the effectiveness of code-switching analytics techniques. One primary question and three sub-questions have been raised for this purpose. The study investigates the computational models used to detect and measures emotional well-being. The study primarily focuses on online postings text, including the extended text analysis, analysing and predicting using past experiences, and classifying the mood upon analysis. We used thirty-two (32) papers for our evidence synthesis and identified four main task classifications that can be used potentially in code-switching analytics. The tasks include determining analytics algorithms, classification techniques, mood classes, and analytics flow. Results showed that CNN-BiLSTM was the machine learning algorithm that affected code-switching analytics accuracy the most with 83.21%. In addition, the analytics accuracy when using the code-mixing emotion corpus could enhance by about 20% compared to when performing with one language. Our meta-analyses showed that code-mixing emotion corpus was effective in improving the mood analytics accuracy level. This SLR result has pointed to two apparent gaps in the research field: i) lack of studies that focus on Malay-English code-mixing analytics and ii) lack of studies investigating various mood classes via the code-mixing approach.

A Study of Tram-Pedestrian Collision Prediction Method Using YOLOv5 and Motion Vector (YOLOv5와 모션벡터를 활용한 트램-보행자 충돌 예측 방법 연구)

  • Kim, Young-Min;An, Hyeon-Uk;Jeon, Hee-gyun;Kim, Jin-Pyeong;Jang, Gyu-Jin;Hwang, Hyeon-Chyeol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.561-568
    • /
    • 2021
  • In recent years, autonomous driving technologies have become a high-value-added technology that attracts attention in the fields of science and industry. For smooth Self-driving, it is necessary to accurately detect an object and estimate its movement speed in real time. CNN-based deep learning algorithms and conventional dense optical flows have a large consumption time, making it difficult to detect objects and estimate its movement speed in real time. In this paper, using a single camera image, fast object detection was performed using the YOLOv5 algorithm, a deep learning algorithm, and fast estimation of the speed of the object was performed by using a local dense optical flow modified from the existing dense optical flow based on the detected object. Based on this algorithm, we present a system that can predict the collision time and probability, and through this system, we intend to contribute to prevent tram accidents.