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Abstract 
COVID-19 has remained one of the most serious health crises in 
recent history, resulting in the tragic loss of lives and significant 
economic impacts on the entire world. The difficulty of 
controlling COVID-19 poses a threat to the global health sector. 
Considering that Artificial Intelligence (AI) has contributed to 
improving research methods and solving problems facing diverse 
fields of study, AI algorithms have also proven effective in 
disease detection and early diagnosis. Specifically, acoustic 
features offer a promising prospect for the early detection of 
respiratory diseases. Motivated by these observations, this study 
conceptualized a speech-based diagnostic model to aid in 
COVID-19 diagnosis. The proposed methodology uses speech 
signals from confirmed positive and negative cases of COVID-19 
to extract features through the pre-trained Visual Geometry 
Group (VGG-16) model based on Mel spectrogram images. This 
is used in addition to the K-means algorithm that determines 
effective features, followed by a Genetic Algorithm-Support 
Vector Machine (GA-SVM) classifier to classify cases. The 
experimental findings indicate the proposed methodology’s 
capability to classify COVID-19 and NOT COVID-19 of varying 
ages and speaking different languages, as demonstrated in the 
simulations. The proposed methodology depends on deep 
features, followed by the dimension reduction technique for 
features to detect COVID-19. As a result, it produces better and 
more consistent performance than handcrafted features used in 
previous studies. 
Keywords: 
Artificial Intelligence, COVID-19 diagnosis, Speech signals, Mel 
spectrogram features, Transfer learning 

 
1. Introduction 
 

The difficulty of controlling the coronavirus (COVID-
19) is considered a threat to global public health. COVID-
19 was discovered in late 2019 in Wuhan, China, and has 
since spread worldwide. In March 2020, the World Health 
Organization (WHO) declared that the COVID-19 
outbreak had become a pandemic [1]. The pandemic has 
negative impacts on society, health, and the economy. 
Two other issues of concern are the continued spread of 
the virus and its multiple strains that all exhibit the same 
symptoms. 

 
To date, the number of COVID-19 cases globally has 

exceeded more than 500 million, increasing the demand 

for screening, diagnosis, and testing of individuals. One of 
the primary methods of detecting COVID-19 is testing for 
Reverse Transcription-Polymerase Chain Reaction (RT-
PCR) by detecting the presence of viral ribonucleic acid 
(RNA) from swab samples [2]. However, this method is 
insufficient to fight the pandemic for several reasons. First, 
the test takes up to several days, and the length of time 
varies by country. Second, the test requires visiting clinics, 
and if proper precautions are not taken, this will expose 
many people or medical staff to COVID-19. The third 
issue involves the high cost and scarcity of this test in 
some countries. 

One of the examination methods used, the Rapid 
Antigen Test (RAT), is a common alternative to RT-PCR 
testing [3]. It is less expensive and takes a shorter time 
than RT-PCR testing. However, samples still have to be 
taken in clinics, posing the same limitation as that of the 
first method.  

Progress in Artificial Intelligence (AI) has contributed 
to improving and solving problems facing all fields 
worldwide. The fields of AI and Big Data (BD) can play a 
significant role in healthcare by detecting and tracking the 
growth rate of COVID-19 [4] [5]. Additionally, it supports 
patient care through early diagnosis and monitoring 
methods. Thus, an AI-based examination’s applicability 
offers a high potential for COVID-19 in terms of patient 
status tracking, prompt result processing, and reduced 
spread, all at a low cost.  

Previous studies analyzed the pathological changes 
caused by COVID-19 in the respiratory system and 
revealed some patterns in the vocal cords and the intensity 
of the voice change in people infected with the COVID-19 
virus  [6] [7]. In accordance with these findings, in the 
current study, we aim to extend the idea with an alternative 
speech-based diagnosis approach. As a result, the main 
contributions of this research are as follows: 

 
 Using speech signals from COVID-19 patients as 

an alternative method of diagnosis; 
 

 Applying the transfer learning approach through 
the pre-trained ImageNet model on audio datasets 
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to extract the most accurate and powerful 
features; 

 Proposing a pre-trained Visual Geometry Group 
(VGG-16) model for extracting the deep features 
based on Mel spectrogram images. 

 Using K-means algorithms to determine effective 
features from the deep features; 

 Combining the Genetic Algorithm (GA) and the 
Support Vector Machine (SVM) algorithm to 
classify cases; 

 Assessing the applicability of speech-based 
diagnosis to COVID-19 for different age groups, 
genders, and languages; and 

 Measuring the efficiency of the speech-based 
diagnosis of COVID-19 by considering the 
patient's symptoms, pre-existing diseases, and 
smoking habit. 

 
We have organized the remainder of this paper as 

follows. In Section 2, we review the literature on disease 
diagnosis and COVID-19 through speech signals. In 
Section 3, we describe the dataset, as well as the data 
processing steps. In Section 4, we explain our proposed 
methodology and algorithms for diagnosing COVID-19. In 
Section 5, we present the experimental results, followed by 
a discussion. Finally, in Section 6, we draw our conclusion. 

 
2. Literature Review 
 

Speech is a non-invasive biomarker that has been used to 
assess human body pain [8] and detect depression [9]. It is 
also a diagnostic tool for various diseases, such as vocal 
disorders [10], multiple sclerosis [11], Parkinson’s disease 
[12], and heart failure [13]. In this context, Schuller et al. 
[14] provided an overview of computer audition (CA), 
such as audio analysis by AI, to aid in controlling the 
COVID-19 pandemic in various ways, including risk 
assessment, diagnosis, and monitoring of its spread. 
Recent studies have focused on COVID-19 diagnosis 
based on cough and breathing sounds [15] [16] [17]. A 
relatively small group of publications expressed interest in 
speech. 

For instance, Han et al. [18] conducted a preliminary 
study of COVID-19 patient speech analysis to categorize 
the patients’ health status based on disease severity, sleep 
quality, fatigue, and anxiety. The experiments involved 51 
people infected with COVID-19 in two hospitals in Wuhan. 
The authors used the Computational Paralinguistics 
Challenge (ComParE) set and the Extended Geneva 
Minimalistic Acoustic Parameter Set (eGeMAPS) as audio 
features, as well as the SVM classifier. The SVM classifier 
obtained an accuracy of 69% in estimating the severity of 
the disease. 

Verde et al. [19] presented a study using Machine 
Learning (ML) algorithms and the Coswara dataset to 
detect COVID-19 by analyzing speech signals. The 
evaluated dataset consisted of 83 healthy and 83 COVID-
19 pathological cases. As audio features, Fundamental 
Frequency (F0), shimmer, jitter, and Harmonics-to-Noise-
Ratio (HNR) were used. This study showed that the 
Random Forest algorithm could classify and achieve up to 
85% accuracy when using the vowel e for diagnosis. 

Usman et al. [20] discussed COVID-19 detection from 
speech data using spectral features and ML algorithms. 
Their study was based on the speech of 22 patients 
infected with COVID-19 and 84 healthy subjects. The 
authors noted that all classification algorithms achieved 
around 70% in recall value, and the best performance of 
Decision Forest (DF) algorithms achieved an accuracy of 
78%.   

In contrast, symptoms and speech were also explored 
in a study by Han et al. [21] to discriminate between 
COVID-19-positive cases and healthy cases. According to 
the COVID-19 sounds dataset, the study was conducted on 
362 positive cases, 502 negative cases, and symptoms. 
This study used an acoustic feature (ComParE) set and an 
SVM classifier for diagnosis and achieved an area under 
the curve (AUC) value of 0.79.  

Additionally, a study was conducted by Stasak et al. 
[22] to detect COVID-19. They used the speech of 
participants with COVID-19 symptoms and similar 
symptoms with a positive or a negative result. The dataset 
included 44 healthy participants, 22 COVID-19-positive 
participants, and symptoms. The authors used the glottal, 
prosodic, and spectral features from the A Cooperative 
Voice Analysis Repository for Speech Technologies 
(COVAREP) features and the Decision Tree (DT) 
classifier. The results indicated that speech features with 
symptoms may produce a COVID-19 classification 
accuracy of up to 80%. 

The existing literature [19] [20] [21] [22] emphasizes 
that COVID-19 affects the vocal tract and that acoustic 
analysis can detect and diagnose COVID-19. Thus, this 
confirms one of our objectives of analyzing speech signals 
to diagnose COVID-19. Table 1 presents the techniques 
and datasets used in the literature related to COVID-19 
and the performance results. The accuracy rates obtained 
are still relatively low and can be further improved. 
Extracting features through handcrafted methods is a 
common strategy used in these studies.  

In comparison, many Deep Learning (DL) technologies 
have been developed to extract features and improve 
performance, where selecting features has a significant 
impact and may lead to correct discrimination between 
classes and optimal performance of the classifier. DL uses 
neural networks inspired by a human brain's structure, 
which can learn and analyze the relations among the data 
to extract features. Recently, DL techniques have been 



IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.9, September 2022 
 
 

 

197

 

used to extract deep features across various datasets in the 
audio domain for diagnoses of diseases and have achieved 
superior performance compared with traditional methods. 

For example, García-Ordás et al. [23] proposed the 
detection of respiratory pathologies through breaths using 
the Convolutional Neural Network( CNN) model and the 
Mel spectrogram. Their study indicated that the model 
achieved up to 99% sensitivity and 99% specificity. Also, 
Vavrek et al. [24] detected dysphonia pathologies using 
the pre-trained ImageNet VGG-16 and a spectrogram for 
speech signals. The study explained can be used for the 
DL technique for voice signals and achieved an accuracy 
of up to 82%. 

Zahid et al. [12] suggested Parkinson’s disease 
diagnosis using the pre-trained ImageNet (Alexnet) and a 
spectrogram through speech. The authors reported that the 
deep feature performed better than systems based on 
simple acoustic properties and achieved an accuracy of up 
to 99.1%. Finally, Zhou et al. [25] proposed cough 
recognition for COVID-19 through the CNN model and 
the Mel spectrogram. The proposed approach to diagnosis 
achieved an accuracy of up 98%. 

DL models have demonstrated their ability to learn 
features from spectrograms for many tasks and have the 
ability to adequately capture the variability among features, 
unlike handcrafted features. Thus, extracting the most 
accurate and powerful features is the optimization goal of 
the target task. As a result, in this study, we apply the pre-
trained (VGG-16) model, which might extract more 
valuable features from the speech signals, and the SVM 
algorithm to classify the COVID-19 cases. 

 
Table 1 : Brief Overview of Studies Using Speech Data to Diagnose 

COVID-19 
 

 

3. Data 
 
In this section, we provide a detailed overview of the 
dataset and the steps of processing the dataset. 
 
3.1 Data Description 

 

The Department of Computer Science and 
Technology at the University of Cambridge [26] has 
created a crowdsourced database of sounds that has been 
compiled from various sources to be used for COVID-19. 
It contains sound samples of coughing, breathing, and 
reading a short audio voice (“I hope my data will be useful 
in managing the virus pandemic.”) to aid in the diagnosis 
of the virus infection. It includes audio samples from both 
the positive and the negative cases, presented by the 
participants. It also contains demographic information 
about each participant, such as age, gender, language, 
symptoms, and medical history. While speech signals 
convey information about human health, they have also 
been used as a tool for assessing and diagnosing a wide 
range of diseases. Our study therefore relies solely on 
speech cues to diagnose COVID-19. 

The crowdsourced dataset contains many participants’ 
cases to ensure the effectiveness of the diagnostic process. 
We therefore chose participants who confirmed their 
COVID-19 results as positive or negative. Additionally, 
whereas the data was gathered through crowdsourcing, it 
was manually checked for audio quality, and any corrupted 
audio data with poor quality was discarded. As a result, 
623 COVID-19-positive participants and 774 COVID-19-
negative participants were selected. The demographic 
characteristics of the samples used in this study are 
depicted in Figure 1. 

 
3.2 Data Processing 
 

In the audio processing step, we standardized the 
sampling rate of the audio signals at 16 kHz, so all arrays 
had the same dimensions. We also removed the silent 
periods in the beginning and at the end of the audio. Then, 
we resized the audio to the same length by dividing it into 
5-second segments. 
 
3.3  Data Augmentation 
 

Data augmentation is a method of dealing with the 
problem of having insufficient training data. It comprises 
data that has been generated from an existing data set 
using a variety of techniques. Adding background noise to 
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an audio signal is one method of enhancing the data 
contained within the audio signal.  

To generate noise, we used the Additive White 
Gaussian Noise (AWGN) approach, which uses a 
Gaussian distribution with a mean of zero and a standard 
deviation equal to the root mean square (RMS) of the 
value of the noise, which was calculated using Equation 1: 

 
 
 

(1) 

 

where RMS refers to the root mean square of the value 
of a signal, and SNR represents the signal-to-noise ratio = 
10.  

Fig. 1 Overview of Sample Distribution 

 

4. Research Methodology 
 
To bridge the gap in the existing methods of COVID-19 
diagnosis, we concentrate on analyzing speech signals as 
an alternative method of diagnosis.  
 
 

The proposed methodology comprises four main phases: 
the audio processor, the pre-trained (VGG-16) model, 
dimension reduction by the k-means algorithm, and the 
GA-SVM classifier, as illustrated in Figure 2. 
 
4.1 Audio Processor 
 
During the first phase, after all of the audio data had been 
processed, the data used in this study totaled 3829 cases 
(2376 positive and 1453 negative). We converted all the 
audio data into the Mel spectrogram images, which 
allowed extracting features from the pre-trained (VGG-16) 
model. 

The Mel spectrogram is a technology for studying 
audio, in which frequencies are converted into the Mel 
scale. The Mel scale is intended to mimic the way that the 
human auditory system operates, where discrimination is 
greater for lower frequency sounds than for higher 
frequency sounds [27]. It is also a tool for visualizing the 
change in frequency of an audio signal over time [28]. 

Additional benefits of the Mel spectrogram are its 
visually appealing way of representing the signal strength 
of an audio and its effectiveness as a tool for extracting 
hidden features from an audio. The Mel spectrogram also 
stores detailed information that allows the appearance of 
differentiation in the audio shape. In the case of audio 
feature extraction, the Mel spectrogram techniques have 
been extensively used in previous research [9] [23] [25] 
[29]. The computation of a Fast Fourier Transform (FFT) 
and a Mel-filter bank are the foundations of the Mel 
spectrogram [27]. The FFT, which represents a signal 
conversion from the time domain to the frequency domain, 
is calculated using Equation 2: 

 
 

(2) 

  
where X(k) denotes the frequency domain sample, 

X(n) represents the time domain sample, and N represents 
the FFT size.  
 

A Mel-filter bank converts the frequency to the Mel 
scale, is calculated using Equation 3:  

 
 
 

(3) 
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Fig.2 Proposed Methodology for Diagnosing COVID-19 

 
 
The Mel spectrogram was created by splitting the 

signal into short static frames, with a length of 25 
milliseconds and an interval of 10 milliseconds between 
frames. Then, for each frame, the FFT with a length of 
1024 was applied to obtain the time frequency for that 
particular frame. Once this process was completed, each 
frequency-domain frame was passed through the Mel-filter 
bank to convert it to the Mel scale. In the last step, the Mel 
spectrogram was created by adding the results of each Mel 
filter. Librosa [30], a Python package for audio analysis 
and processing, was used in this study to create a Mel 
spectrogram. The steps involved in extracting the Mel 
spectrogram from an audio signal are depicted in Figure 3. 

 
Figure 4 also depicts the Mel spectrogram of a 

COVID-19 carrier and a voice that has not been infected 
with the virus (not infected). It also demonstrates the 
difference in tones between the two audios. Variations in 
hue indicate the signal strength in the Mel spectrogram, 
with the light color indicating speech events and high 
energy and the dark color indicating a break in speech and 
low energy. The positive case shows a break in the voice 
and low energy when speaking, while the negative case 
shows no break in the voice and high energy when 
speaking. 

 
 

Fig.3 Steps of Converting Audio Signals into the Mel Spectrogram 
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Fig.4 Mel Spectrogram Samples of Positive-/Negative-Case Speech 
Signals 

 
4.2 Deep Learning Model 
 
The transfer learning approach was used in the course of 
the work in the second phase. We used the pre-trained 
(VGG-16) network proposed by Simonyan and Zisserman 
[31] as a feature extractor from the Mel spectrogram. The 
VGG-16 architecture is generated by stacking 3 x 3-filter 
size convolutional (CONV) layers with maximum (Max)-
pooling layers for the 2 x 2-filter size. Because the 
dimensions of the VGG-16 model decrease, while the 
depth increases with each layer, the model’s strength is 
attributed to this property. The pre-trained VGG-16 model 
is described in detail in Figure 5, and the layers used in the 
research are explained in greater detail. 
 

1. Input Layer 
 
The input layer of the VGG-16 model uses images that 
have three channels and 224 x 224 x 3 sizes. Therefore, we 
resized the Mel spectrogram images to be proportional to 
the model as inputs. 
 

2. Feature extraction layer 
 
The feature extraction layer is made up of the CONV layer, 
the Max-pooling layer, and two fully connected (FC) 
layers, as illustrated in Figure 5. Therefore, we passed the 
Mel spectrogram images through these layers to extract the 
deep features. The following are the layers’ specific 
characteristics: 
 

 
Fig.5 VGG-16 Model of Proposed Methodology 

 CONV layer. It is the fundamental component of 
the model and the first layer. This layer functions 
as a window to search for features in the input 
images, pixel by pixel, to extract the features 
from the images. Additionally, the convolution 
process is carried out in this layer between the 
input image and the convolutional filter, resulting 
in the production of a feature map, which is a 
representation of the image, with new pixel 
values derived from the original image [32].  

 
 Max-pooling layer. This layer contributes to the 

reduction in the size of the network by decreasing 
the number of parameters provided to the next 
layer [32]. As a result, the max-pooling layer 
contains only the essential features from the 
previous feature map. The VGG-16 model has 
five max-pooling layers, following the CONV 
layers, as shown in Figure 5. 
 

 FC layers. These final layers in the model gather 
the features from the previous layers and perform 
a high-level logical action between them. 
Although there are three FC layers in a VGG-16 
model, the last layer (FC3) is the one that is used 
for classification. As a result, in this study, we 
used two FC layers with a total of 4,096 nodes to 
extract deep features, as illustrated in Figure 5. 

 
4.3 Dimensionality Reduction 
 
In the third phase, we aim to have the most appropriate 
and relevant features that would help in COVID-19 
diagnosis. Therefore, the model relies on the k-means 
algorithm, which reduces the deep features extracted from 
VGG-16 before applying the GA-SVM classifier. 

Following the feature extraction step from the VGG-16 
model, we obtained 4096 dimensions for each instance in 
the dataset. To map relevant features from the original 
features had been reduced to a smaller number of features 
[33]. In data mining, the phrase “reduce dimensions” 
means reducing the number of features in a dataset, while 
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retaining the greatest amount of variance from the original 
dataset. As a result, it determines which features are the 
most important and improves the performance of ML 
algorithms [34]. 

The clustering algorithm is used to reduce dimensions. 
It is an unsupervised learning technique, defined as the 
process of grouping data points into a number of groups 
in such a way that the data points from the same groups 
are more closely related to one another than the data 
points from other groups [33]. As a dimensionality 
reduction technique, it is defined as the process of 
grouping data points into a number of clusters and 
computing the distance of a data point from each cluster 
center by the Euclidean Distance function using Equation 
4. Finally, it represents each of the data points in terms of 
how far it is from each of these cluster centers as the 
feature vectors for data [33] [35]. 

   
    (4) 

                          
 
where k represents the number of clusters, n denotes 

the dataset points, and c signifies the centroid for the 

cluster. The distance indicator of the points and their 

represented centroids  are . 
 
The k-means algorithm is a type of clustering algorithm 

that is most commonly used to reduce dimensions [36] [37] 
[38]. This algorithm fundamentally depends on the number 
of clusters; consequently, the elbow method [33] is used to 
determine the optimal number of clusters to use. The elbow 
method is represented by a graph that depicts the sum of 
squared errors (SSE) for each value of the parameter k. The 
SSE is defined as the sum of the squared distances between 
each data point in the cluster and the centroid of the cluster, 
and it is calculated using Equation 5. 

                  
(5)      

 

where x represents the data point in each cluster , 

and  is the representative for the center cluster  
 

 
Fig.6 Elbow Method for K Value 

Figure 6 illustrates the elbow method graph when 
applied to our dataset. First, we randomly initialized the 
numbers of the k cluster and displayed them against the 
SSE. As shown in Figure 6, k = 30 is the elbow point, and 
it is the optimal k value in our dataset. After determining 
the k value for the clusters, we applied the k-means 
algorithm to the dataset by calculating the distance of 
each data point from each centroid using Equation 4. 
 
 
4.4 Classifier 

 
After obtaining the audio features from the previous stages, 
it is fed into the GA-SVM classifier, which classifies the 
case as either COVID-19 or NOT COVID-19. 

The SVM algorithm is a supervised learning algorithm 
for classification [39]. It is also a powerful and adaptable 
tool, capable of implementing linear or nonlinear 
classification, regression, and even outlier detection [33]. 
Figure 7 illustrates the basic concept of the SVM, which is 
based on finding the best way to divide data through a 
hyperplane. Support vectors are used to select the optimal 
hyperplane, which is a collection of data points that are 
closest to the hyperplane.  

Basically, the hyperplane is calculated using Equation 
6, where w is an n-dimensional vector, x represents the 
input feature vector, and b denotes the bias.  
 

                                   (6) 
This divides the data into two classes as the label can 

be either ‘+1’ for Class A or ‘-1’ for Class B, as shown in 
Figure 7. The data is labeled in the classifier based on the 
conditions, as indicated in Equations 7 and 8. 

          (7) 

(8)                  
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Additionally, Figure 7 illustrates the margin and is 
calculated using Equation 9. It is as the distance between 
the hyperplane and the support vector for each class. The 
greater the distance, the higher the probability that new 

data would be correctly classified [40].    

 (9)    

 
The SVM is one of the most commonly used and 

popular classification algorithms for disease diagnosis [36] 
[38] [41]. Furthermore, it is highly effective in 
classification and has a high degree of generalization 
capacity. In general, the performance of the SVM 
classifier depends on the chosen hyperparameters, such as 
kernel functions and the parameter C [40]. C is a 
regularization and optimization parameter for maximizing 
the margin and minimizing the classification error. The 
kernel is another parameter that receives data as input and 
converts it into the format required for data processing. 

For the SVM’s best performance, hyperparameter 
adjustment is essential. However, there is no precise 
benchmark for evaluating the value of each SVM 
hyperparameter that may be used. As a result, optimized 
algorithms, such as GA, provide tuning for 
hyperparameters. Genetic-based optimization is a 
technique that uses genetics and natural selection to find 
the best solution. It is based on Darwin’s theory of 
evolution and implies the (survival of the fittest) [42]. 

Figure 8 presents how in this study, we used GA for 
hyperparameter optimization of the SVM. The GA process 
begins with a population of randomly generated candidate 
solutions. It is a set of chromosomes evaluated by the 
fitness function and includes the accuracy rate. At the 
same time, each chromosome has a hyperparameter and 
the actual input value for each evaluation. Iterative 
searching for high-performing hyperparameters combines 
each generation and passes them on to the next until the 
highest-performing combination has been discovered. 
Although parameter values are initially generated at 
random, they rarely contain optimal parameter values. The 
genetic factors of selection, crossover, and mutation are 
used by the algorithm to determine these parameters [42]. 
The following list provides an overview of genetic 
operators: 
 
 Selection operator. The concept of selection 

operation is to choose the hyperparameter with the 
highest fitness value to be used in the next 
generation of the algorithm. 

• Crossover operator. This is a process of 
chromosome interchange that results in the creation 
of a new individual, and we used the uniform 
crossover to accomplish this. It indicates that each 

gene is determined independently by a 50% random 
distribution of chromosomes. 

• Mutation operator. The mutation operator is used in 
the process of generating a new generation. 
Mutation represents the introduction of new 
patterns into the chromosomes, as well as the 
random modification of the information contained 
within. 

The loop is repeated until a stopping condition is met. 
A condition has been established for stopping when the 
maximum number of generations has been reached. At that 
point, the optimal SVM hyperparameter has been 
determined, and the model has been tested on the data. 

 

 
 

Fig.7 Support Vector Machine Algorithm 

 
 

 
Fig. 8 Flowchart Diagram of GA with SVM 
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5 Results and Discussion 
 
In this section, we present our study’s results and evaluate 
the model in a variety of scenarios, as well as discuss the 
specifics of these results. Following this, we demonstrate 
and compare the performance of our model with those of 
other models that use the same or different phenomena. 
 
5.1 Performance Metrics 
 

Specifically, the ramifications of misclassifying a 
sample as not being infected with COVID-19 may cause 
the spread of the infection. Consequently, the model’s 
performance is measured using more performance metrics, 
as described below.  

Accuracy is the percentage of correct predictions made 
when testing a model and is calculated in Equation 10. 
 

  
(10) 

 
Sensitivity is the percentage of times that a model 

correctly predicts positive results and is calculated in 
Equation 11. 

  
          (11)
   

Finally, specificity is the percentage of times that a 
model correctly predicts the negative results and is 
calculated in Equation 12. 

  
 (12)

  
 
To explain in more detail the variables used in 

performance metrics equations, true positive (TP) is the 
number of samples infected with COVID-19 that the 
model actually predicted as infected. In contrast, true 
negative (TN) represents the number of NOT COVID-19 
samples that the model predicted as not infected. In 
contrast, false positive (FP) and false negative (FN) 
variables represent the number of COVID-19 or NOT 
COVID-19 samples, respectively, and were incorrectly 
predicted by the model. 

 
The receiver operating characteristic (ROC) curve was 

also used to assess the model’s performance. It is a graph 
that illustrates the relation between the TP and the FP rates. 
More specifically, it displays the AUC of the data. It will 
be more accurate for the classifier to distinguish between 
positive and negative class points if the value is closer to 
one. 

 
 
 

5.2 Experimental Results 

To know the diagnostic efficiency of the speech 
signals for COVID-19, we performed two experiments for 
the evaluation. Both experiments were conducted using 
data divided 80/20, with 80% of the data used for training 
and 20% for testing. 
 
5.2.1 First Experiment 
 

The model was evaluated when conducting the first 
experiment by dividing the data into similar groups based 
on age, language, and gender. Additional evaluations 
included medical history, smoking status, and COVID-19 
symptoms of the samples. 

To take into account multilingualism and the spread of 
COVID-19 worldwide, we investigated the relation   
between the human voice and COVID-19 infection, and 
COVID-19 was diagnosed in each language separately. It 
turned out that the model’s accuracy rates were 99% in 
English, 98% in Italian, and 97% in Spanish. In 
comparison, its accuracy rates were 93% and 92% in 
Russian and French, respectively, 95% in Portuguese and 
German, and 100% in Greek and Romanian. 

All people of all ages are at risk of contracting 
COVID-19, so we evaluated the model based on age 
groups at 10-year intervals. The results showed the 
following diagnostic accuracy rates: 93% for the 20–29 
age group, 95% each for the 0–19 and 50–59 age groups, 
96% each for the 40–49, 60–69, and 80–89 age groups, 
and 97% and 100% for the 30–39 and 79–70 age groups, 
respectively. Additionally, the model reported an equal 
diagnostic accuracy of 96% for both genders. 

Those who experience symptoms, such as coughing 
and sore throat, may have more negative impacts on their 
respiratory systems than those who do not experience 
symptoms. Therefore, we isolated those experiencing 
symptoms from either the positive or the negative test. At 
the same time, we separated those who did not show any 
signs of illness. When we tested the model, it achieved a 
similar accuracy of 97% for both groups with and without 
symptoms.  

To study the accuracy of the COVID-19 diagnosis 
based on speech signals from those who had respiratory or 
other diseases, we examined the responses of those who 
reported having diseases and those who had no medical 
history of diseases. The model has the ability to perform 
COVID-19 diagnosis for those who have diseases, with an 
accuracy of 96%. Furthermore, the model achieved a 99% 
accuracy rate for those who did not have any diseases. 

 
Smoking is also a factor that has adverse impacts on 

the respiratory system and the vocal cords of an individual. 
Therefore, to determine the model’s effectiveness in 
diagnosing this category based on the audio characteristics, 
we evaluated the model through samples of smokers and  
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Table 2 Performance Metrics of GA-SVM Classifier 

 
non-smokers. For non-smokers, the accuracy of the model 
was 96%, and for smokers, the accuracy was 95%. The 
performance metrics of all similar groups for the diagnosis 
of COVID-19, as determined by the GA-SVM model, are 
presented in Table 2. 

Figure 9 depicts an ROC curve for the GA-SVM model. 
When the age range was above 50 years, the AUC value 
was greater than 0.95 but less than 0.95 in the age range 
under 50 years. Regarding languages, the AUC value 
varied from 0.94 to 0.1. It was determined that the AUC 
value for symptomatic samples was 0.96, while for 
asymptomatic samples, it was 0.97. AUC values of 0.94 
and 0.95 were obtained for the smoking and the non-
smoking samples, respectively. Female and male groups 
both achieved an AUC value of 0.96. When there was a 
medical history of diseases, the AUC value was 0.97 
versus 0.99 when there was no medical history of diseases. 

5.2.2 Second Experiment 
 

Based on the dataset, we conducted a second 
experiment to evaluate the GA-SVM model on various 
demographic characteristics of the samples. The model 

achieved an accuracy of 97%, a sensitivity of 98%, and a 
specificity of 97% as shown in Table 2. The ROC curve 
for this experiment, which is plotted in Figure 9, achieved 
an AUC value of 0.97.  

 
 
 

Fig 9 ROC Plot of GA-SVM Classifier 

 
5.3 Discussion of Results 

In this study, our principal findings and 
interpretations are based on the values of the analytical 
simulation during the experiments. The speech signals 
constitute an excellent predictor when screening for 
COVID-19 and have features that can be used as a 
diagnostic tool.  This finding is consistent with other 
research findings regarding using speech as a diagnostic 
tool for COVID-19 [6] [7]. Additionally, based on the 
results, examining COVID-19 from speech using the same 
model in different languages and across all age groups is 
feasible.  

The model detected the majority of COVID-19-
positive patients, whether they were asymptomatic or 
experiencing symptoms. A further consideration is that the 
closer the ROC curve is to the upper left corner and when 
its value is greater than 0.9, the more efficient the model is 
for the test [43]. Figure 9 shows that the AUC values are 
greater than 0.9 in all of the ROC curves found in the 
experiments. Moreover, it has been observed that the K-
means algorithm effectively reduces the number of 
dimensions and selects the best features from the feature 
space after the deep features based on Mel spectrogram 
images.  

We have also discovered that speech utterances in 
sentences are more consistent and accurate predictors of 
COVID-19 infection than vowels, since vowels were also 
used in past studies to diagnose COVID-19 [19] [22]. As a 
consequence, the patients may find it difficult to produce 
speech, which may result in speech patterns or features 
that differ from those of a normal person.  

Table 3 shows a comparison of the accuracy of the 
proposed methodology with the accuracy rates reported in 

Group Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

First Experiment 
a. Language 

English 99 99 100 

Italian 98 95 99 
Spanish 97 95 98 
Portuguese 95 90 89 
Russian 93 88 100 
French 92 92 100 
German 95 95 92 
Greek 100 100 100 
Romanian 100 100 100 
b. Age range 

0–19 95 95 95 
20–29 93 95 89 
30–39 97 98 93 
40–49 96 94 90 
50–59 95 99 97 
60–69 96 95 100 

07 –79 100 100 100 
80–89 96 95 100 
c. Gender 
Female 96 96 97 

Male 96 96 97 
d. Symptoms of COVID-19 
Symptomatic 97 92 99 
Asymptomatic 97 98 94 
e. Medical history  
Diseases 96 96 97 
No diseases 99 98 99 
f. Smoking   
Smoking 95 95 93 
Non-smoking 96 92 98 

Second Experiment 
Different 
demographics 

97 98 97 
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previous literature [19][20][21][22]. In contrast to the 
literature, our model obtained the audio features by 
extracting deep features from the Mel spectrogram images. 
In this case, deep features outperformed handcrafted or 
traditional features. We also compare some of the 
advantages and disadvantages of our features with those of 
the audio features proposed in previous literature, as 
presented in Table 3. 

Based on our proposed methodology, we also 
performed a comparative analysis to highlight the 
diagnostic power of audio features in comparison to a 
previous study [21], which utilized the same data but 
added symptomatic features to the audio features for 
COVID-19 diagnosis. As a result, we integrated audio 
features and symptoms. To convert these symptoms into 
feature vectors, we indicated that individuals had 
symptoms (1) or (0) no symptoms.  

The experimental results show that the accuracy of the 
acquired rate has decreased by 2% since our second 
experiment and achieved an accuracy of 95%. One 
possible explanation is that the symptoms do not 
correspond to the COVID-19 diagnosis. Figure 2 shows 
the data demographics, indicating 68% of the COVID-19-
positive samples as asymptomatic, whereas 47% of the 
negative samples as symptomatic. We demonstrate that 
human speech contains hidden features that can be used to 
diagnose people who are asymptomatic or are 
experiencing symptoms. 

 
Table 3 Comparison of Features Used in Our Proposed Methodology and 

Previous Studies 
 

 
 
 

 
6. Conclusion 
 

The rapid spread of COVID-19 and its high infection 
rates have overburdened global healthcare systems, 
aggravated by the high costs of clinical tests for COVID-
19 and the long time it takes to obtain the results. 
Therefore, diagnosing COVID-19 by a cost-effective, fast, 
easy, and accurate method is crucial. Thus, the AI-based 
preliminary diagnosis for COVID-19 is regarded as a 
viable solution for taking the necessary preventive 
measures. Using audio samples of a person’s speech in this 
study, we suggest a different AI-based diagnostic method 
for controlling the pandemic before infection transmission 
occurs among people.  

In this work, we have presented proof of automatic 
detection of COVID-19 from human speech through a 
transfer learning technique to extract deep features from 
the audio dataset. The proposed methodology combines 
the pre-trained (VGG-16) model with Mel spectrogram 
images to extract deep features of the speech signals and 
the K-means algorithm that determines effective features. 
In addition to the GA-SVM classifier, it contains the GA 
for selecting the optimum hyperparameters for the SVM 
algorithm for diagnosing cases. 

The proposed methodology performance was evaluated 
using a variety of evaluation criteria. The results show that 
the proposed techniques are suitable when the model is 
tested in different situations using the crowdsourced 
dataset. As a result, speech-based diagnosis can be one of 
the safest methods for COVID-19 diagnosis, which can 
help control the spread of the global pandemic. 

In future work, we will evaluate the proposed model on 
other available COVID-19 audio datasets. We also plan to 
expand the datasets by diagnosing other diseases in 
addition to COVID-19. 
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