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[요    약] 

자율 주행체와 네트워크 기반 제어 기술의 발달에 따라서, 하나의 에이전트를 제어하는 것을 넘어서 다수의 이동체를 분산 제어

하는데 사용 가능한 다중 에이전트의 컨센서스 제어에 대한 관심과 연구가 증가하고 있다. 컨센서스 제어는 분산형 제어이기 때문

에, 정보 교환은 실제 시스템에서 지연을 가지게 된다. 또한, 시스템에 대한 모델을 정확히 수식적으로 표현하는데 있어서 한계를 

갖는다. 이런 한계를 극복하는 방법 중에 하나로서 강화 학습 기반 컨센서스 알고리즘이 개발되었지만, 불확실성이 큰 환경에서 느

린 수렴을 갖는 경우가 자주 발생하는 특징을 보이고 있다. 따라서, 이 논문에서는 불확실성에 강인한 특성을 갖는 슬라이딩 모드 

제어를 강화학습과 결합한 슬라이딩 강화학습 알고리즘을 제안한다. 제안 알고리즘은 기존의 강화학습 기반 컨센서스 알고리즘

의 제어 신호에 슬라이딩 모드 제어 구조를 추가하고, 시스템의 상태 정보를 슬라이딩 변수를 추가하여 확장한다. 모의실험 결과 

다양한 시변 지연과  왜란에 대한 정보가 주어지지 않았을 때에 슬라이딩 강화학습 알고리즘은 모델 기반의 알고리즘과 유사한 성

능을 보이면서, 기존의 강화학습에 비해서 안정적이면서 우수한 성능을 보여준다.

[Abstract]

With advances in autonomous vehicles and networked control, there is a growing interest in the consensus control of a multi-agents 

system to control multi-agents with distributed control beyond the control of a single agent. Since consensus control is a distributed control, 

it is bound to have delay in a practical system. In addition, it is often difficult to have a very accurate mathematical model for a system.  

Even though a reinforcement learning (RL) method was developed to deal with these issues, it often experiences slow convergence in the 

presence of large uncertainties. Thus, we propose a slide RL which combines the sliding mode control with RL to be robust to the 

uncertainties. The structure of a sliding mode control is introduced to the action in RL while an auxiliary sliding variable is included in the 

state information. Numerical simulation results show that the slide RL provides comparable performance to the model-based consensus 

control in the presence of unknown time-varying delay and disturbance while outperforming existing state-of-the-art RL-based consensus 

algorithms.
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Ⅰ. Introduction 

With the rapid progress in network, computing, and control 

technologies, many devices are controlled over a network. They 

can be either controlled through a centralized processor, or each 

own decentralized processor. However, the centralized 

processor often experiences the limitation of the computational 

complexity with the growing number of agents in a system 

while the decentralized one often experiences the performance 

degradation due to the limited information. The distributed 

control has the tradeoff between the complexity and 

performance through information exchange with a subset of the 

objects in the system.

Depending on the operating environment, the goal of a 

distributed control can be different. Among many different 

control objectives, a consensus has been paid significant 

attention recently. The consensus control of multiple agents can 

be defined as controling each object to achieve a common goal. 

The consensus control has been applied to many different fields 

such as the coordination of robots [1], voltage and phase 

synchronization of power networks [2], the altitude formation 

of satellites [3], traffic control [4], group decision-making [5], 

and network server load balancing [6].

In consensus control, each agent exchanges information with 

neighbor agents. Thus, the structure of the graph representing 

communication among agents has a critical impact on control 

performance. The algebraic connectivity which is the second 

smallest eigenvalue of the Laplacian matrix was shown to 

determine the convergence speed of the consensus in a 

continuous time domain [7]. A consensus algorithm converging 

to the average of the initial state in a discrete-time was 

proposed and the algebraic connectivity was shown to 

determine the convergence of the corresponding consensus 

algorithm [8]. The Laplacian matrix was proven to be an 

optimal linear consensus algorithm for a multi-agent system 

(MAS) with the first-order dynamics in the perspective of a 

linear-quadratic-regulator (LQR) [9]. A hierarchical feedback 

controller based on LQR for the consensus of a leader-follower 

MAS was proposed to have a tradeoff between the complexity 

and performance through an articulated graph structure [10]. 

Communication to exchange information is bound to have 

delays. However, the delay in a control system can have an 

effect on the stabilization of the system if it is not considered 

properly in the development of the control algorithm [11]. A 

linear matrix inequality (LMI) was exploited to derive a 

sufficient condition for the average consensus of a MAS with 

higher-order dynamics in the presence of time-varying delays 

[12]. Using the Nyquist criterion, a consensus protocol was 

developed for a heterogenous MAS with bounded input delay 

[13]. A sliding mode control was exploited to develop a robust 

consensus control for a MAS with the second-order dynamics 

in the presence of unknown time delay and bounded 

disturbance [14].  A robust output feedback consensus control 

was developed from a sufficient condition for the secure 

consensus of a MAS to deal with sampling error and 

deny-of-service (DOS) attacks [15].

While most researches have developed an algorithm from an 

abstract mathematical model with assumptions and 

preconditions, perfect system information is often unavailable.  

To deal with this issue, a novel approach has been made with 

reinforcement learning (RL). Combined with deep learning, 

deep reinforcement learning has shown the potential to learn 

efficiently in many different areas such as computer games 

[16], controls [17], and robotics [18]. RL often tries to generate 

an action to maximize the return which is the expected 

cumulated reward. A popular method of realizing RL with a 

neural network (NN) is to introduce two networks, an 

actor-network to generate an action and a critic network to 

estimate the action-state value. A policy iteration algorithm for 

the consensus of a MAS with linear dynamics was developed 

from the coupled Hamilton-Jacobi-Bellman equation with an 

actor-critic NN [19].  Similarly, RL consensus algorithms were 

designed by solving algebraic Riccati equation (ARE) for 

approximate dynamic programming (ADP) [20][21]. An 

identification NN was introduced for linear system 

identification to stabilize the convergence of the actor-critic 

networks for the consensus of a linear MAS further [22].  A 

policy iteration algorithm for the consensus of a nonlinear MAS 

was developed from ADP derived from an extra compensator 

[23]. Online RL to solve the optimal consensus problem was 

proposed for the consensus of a MAS with the second-order 

dynamics [24].

While RL has the potential of providing a consensus 

algorithm without explicit model knowledge, being sensitive to 

parameterization, it often experiences the convergence problem. 

The online RL in [24] applied to the consensus of a MAS with 

the second-order dynamics with unknown time-varying delay 

and disturbance was shown to converge very slowly in 

comparison to the consensus algorithm based on supervised 

deep learning [25]. To deal with the slow convergence, we 

propose an RL with the structure of the sliding mode control, 

which is called “slide RL”. The structure of the action follows 

the sliding mode control which consists of a linear part and a 

sliding part. The underlying motivation to introduce the 

structure of sliding mode control to RL is that the sliding mode 

control is robust to the uncertainties. It implies that RL and the 
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sliding mode control can be considered as robust methods to the 

uncertainties. Thus, combining these two methods may 

accelerate the convergence of the RL. Simulation results with 

various system configurations show that the proposed slide RL 

achieves near model-based performance without model 

knowledge.

This paper is organized as follows. A system model for a 

MAS with the second-order dynamics and the consensus 

objectives are presented in section-II. The section-III provides 

the derivation of the slide RL and a description of the 

corresponding pseudo-code. In section-IV, the parameters of 

the sliding RL were determined first from simulations first. The 

performance of the slide RL was compared with the 

model-based algorithm and the existing state of art consensus 

RL algorithms. Some concluding remarks and the future 

research are presented in section-V.   

Ⅱ. A System Model and Problem 

Formulation

In this paper, a consensus of a leader-follow multi-agent 

system with the second-order dynamics is considered. A 

corresponding system model can be given as 


  


                                            (1)

where 
 is the second order derivative of the position 

 of 

the agent , 
 is a control signal and  

 is disturbance from 

external sources such as wind. It is assumed that the system state 

information can be obtained without measurement error. If there 

is a measurement error, the state estimation algorithm needs to be 

developed further, which is beyond the scope of this research. It is 

also assumed that each agent transmits system information to a 

subset of agents which can be determined from the 

communication range or pre-plan to satisfy some goal of 

performance objective. A communication graph which consists of 

edges and nodes holds this information. The edge and the node 

represent the presence of communication and each agent 

respectively. Let   be the adjacency matrix of the corresponding 

communication graph and  be the element located as the th 

row and the jth column.  has the value of 1 when the agent 

receives information from the agent , otherwise 0. 

The model-based algorithm usually takes the control signal as 

a linear function of state difference in the absence of  uncertainty. 

In the presence of uncertainties, the control signal for a consensus 

control can be represented as follows.


  

                                            (2)

where 
 is information available at time t for the agent .  


 can be written as  


  xj

tij
xj

tij
xj

tij
jforaij

 

∪xi
txi

txi
t

     (3)

where  is a communication delay from  agent  to agent . It is 

assumed that the communication delay is unknown and time- 

varying. The time-varying unknown delay has an effect on the 

stabilization of the control and the convergence speed of the 

control. 

The goal of the consensus control for a leader-followers MAS 

with the second-order dynamics is to synchronize the position of 

each follower agent to that of the leader agent. It can be 

represented as 


  


                                            (4)

lim
→∞

 
  for  ⋯         (5)

where 
 is often called as a disagreement error. Even though 

the asymptotic convergence is considered, the convergence speed 

can be of practical interest. The following local error has been 

often used as a metric to measure the degree of consensus.


  

  







                                                 (6)


  

  







                                                 (7)

Ⅲ. Slide Reinforcement Learning

Sliding mode control has been researched to develop robust 

control in the presence of uncertainties. The basic principle in the 

sliding mode control is to pull up the state into the sliding surface 

where the state trajectory is designed to be independent of 

uncertainties. A model based RL[24] is exploited to be equipped 

with sliding mode. Since the sliding mode control is a 

model-based control, the model-based RL may provide a better fit 

to allow sliding mode in its structure. For the purpose of the 

implementation, The slide RL is developed for the MAS in a 

discrete time which is a sampled version of the continuous time 

system model with the sampling period  .

A discounted action-value function which measures the value 

of action for a given state can be defined as follows

     
  

∞

                                    (8)
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     
  

  
                            (9)

where    is a reward signal of the agent  at time step ,   is a 

discounting factor to determine how much future reward will be 

considered, and    and  are symmetric weight matrices 

with dimensions associated with    and  respectively. 

To exploit the sliding mode,  can be structured in the 

following way [14].

                                                (10)

where  is a weight controlling the effect of sliding mode, and  

 is a sign function which takes a 1 if input is positive, 0 

otherwise. 

We take the same procedure to derive the optimal control 

policy as exploited in [24]. Let 
 be the optimal value function 

which satisfies the coupled Hamilton-Jacobian equations. The 

dynamic programing equation for 
 can be written as from (8)  

   
  

  
                                              (11)

where 
 is an optimal action of the agent  at time step . From 

the first-order optimality condition, the optimal action can be 

expressed as 

       





 









                                             (12)

For a given , (12) can be rewritten as 

       





 









                                       (13)

With exploiting the derivation procedures and the fact that the 

discounted value function 
  

  can be 

represented as quadratic function, (13) can be arranged as 

       





 

 





  



       (14)

where       with the first 0 is a scalar and the last 0 is 

a row vector with the dimension depending on the number of 

neighbor agents,   
 

 
 





 , and 





is the 

concatenated neighbor actions at time step k. With limiting the 

actor network as a linear network, the proposed slide RL for the 

consensus of a leader-followers MAS with the second-order 

dynamics can be summarized as the figure-1 which is modified 

from the pseudo-code in [24]. It first initializes the parameters 

and variables. Then, it repeats the process from steps 1 to 6 at 

each time step. It generates the partial action from the actor 

network, with which the action is determined from combining the 

sliding part. Then, it calculates the action-state value and target 

partial action  With the temporal difference error and the 

difference between the partial action and the target partial action, 

the critic network and the actor network are updated respectively. 

그림 1. 지도자-추종자 다중 에이전트 시스템의 컨센서스를 위한 

슬라이드 RL 구현 유사 코드

Fig. 1. Pseudo Code for the implementation of the slide RL for 

the consensus of a leader-followers MAS

Ⅳ. Experiment Results
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그림 2. 모의실험을 위한 통신 그래프

Fig. 2. Communication graphs used for simulation

In this section, the performance of the proposed slide RL is 

assessed with numerical simulations. To this end, the descriptions 

of the operations of a MAS will be provided with the 
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parameterization and network structures of the neural networks 

for RL. The performance of the slide RL will be compared with 

several states of art methods.

Following the system configurations used in [25], 6 different 

communications graphs shown in the figure-2 were considered to 

assess the applicability of the proposed method to various 

environments. The number of nodes is 5 to 10 while the 

maximum number of neighbor nodes is 2 for the simplicity of the 

simulation. Delay, disturbance, and the dynamics of the leader 

agents were configured differently as presented in the table-1 and 

the table-2 where k and l are indices for agents. Different 

disturbance with the same envelope is applied to each agent. The 

delay at each communication link is different while the maximum 

delay is 0.5 seconds for every configuration.

Comparing state of art algorithms were configured as follows. 

The actor network for the modified TD3 with pretraining was 

configurated to have one hidden layer with 256 nodes and linear 

activation, and an output layer with 1 output node and 

hyper-tangent activation. The critic network was configured to 

have 3 hidden layers with a number of nodes, 32,256, and 256, 

and an output layer with one node and linear activation. The 

model-based RL and the model-based RL(p) were configured 

with following the description in [24][26].  Please refer to the 

details of the comparing algorithms in [24][25][26].

The slide RL was configured to have the same structure as the 

model-based RL except that the square of the sliding variable is 

added to the reward. Four important parameters were found to be 

critical in the convergence of the slide RL. Those are the 

initialization of the weight matrix  for generating action,  the 

initialization of the weight matrix  for determining the 

action-state value,  the learning rates,  and  for the actor 

network and the critic networks, and the sliding mode weight  . 

 and  are initialized with gaussian random variable with 

mean 0 and standard deviation,  and  respectively. 

Depending on these parameters, the state of an agent was 

observed to diverge with some different initializations for the 

same system configuration. To find a proper parameterization, 

different combinations of  ,  , and    were tried while   was 

fixed at 100, and  was set as equal to  . After having many 

different heuristic trials.  of 10-6,  of 10-6 , and   of  5x10-10 

were found to provide stable convergence with different 

initializations for each system configuration. Increasing  to 

5x10-9  with fixing  and  as 10-6 resulted in the divergence for 

all system configurations. Increasing  or  to 10-3  with fixing 

 as  5x10-10  did not incur any divergence while it degrades the 

mean square error (MSE) performance slightly. These results may 

imply that the performance of slide RL has strong dependency on 

the learning rate while it has marginal dependency on the 

initializations of  and  . From these results,   ,  , and 

and   were set as  5x10-10  unless otherwise stated. 

표 1. 각 시스템 구성에서 지도자 에이전트의 가속도와 왜란

Table 1. The acceleration of the leader agent and 

disturbance for each system configuration

case Acceleration of   leader agent Disturbance

1 coscos sincos

2 coscos   sin  

3 coscos   sin  

4 coscos   sin  

5 coscos   sin  

6 cos    cos  cos   

표 2. 각 시스템 구성에서 통신 그래프와 지연

Table 2. The communication graph and delay for each 

system configuration

case Graph Delay

1 A cos 

2 A cos

3 B       

4 C        

5 D cos      

6 D cos      

However, depending on  , the performance of the slide RL 

may vary. To examine the effect of  , the performance of the 

slide RL was evaluated for 4 different  s. The table-3 shows the 

MSE with different  s. It is observed that the MSE marginally 

increases with increasing  for all system configurations. A 

similar trend can be found on the mean square of disagreement 

(MSD) in the table-4 even though the effect of  on MSD is not 

as significant as on MSE. When  was set as 20 or 30, some 

divergences for the case 5 and case 6 were observed. This can be 

expected in the sense that  is required to be greater than some 

value to provide stable control performance in a sliding mode 

control. Since   of 40 provides the lowest MSE and MSD while 

saving the control efforts and providing stable convergence,     

was set as 40 throughout this simulation unless otherwise stated.

After optimizing the parameters of the slide RL, the 

performance of the slide RL were compared with the existing 

state of art methods. They are model-based RL [24], pretrained 

model-based RL denoted as model-based RL(p)[26], pretrained 

modified TD3 denoted as modified TD3(p) [26]. The 

performances of the slide RL were shown for each case in 

figure-2. The slide RL was observed to provide comparable 

performance to the model-based algorithm with the best 
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performance. The model-based RL without pretraining 

experienced divergence for some initializations for each case 

while the two pretrained RL algorithms provide consistent similar 

performance. The slide RL is also found to outperform the 

existing RLs in terms of the average MSE while the variance of 

the MSE of the slide RL is the smallest among considered RL 

algorithms for all cases. 

표 3. ku의 MSE에 대한 영향 

Table 3. The effect of ku on MSE 

case\ku 40 60 80 100

1 0.00027 0.00070 0.00147 0.00256 

2 0.00021 0.00056 0.00117 0.00203 

3 0.00024 0.00064 0.00120 0.00223 

4 0.00022 0.00056 0.00111 0.00167 

5 0.00022 0.00056 0.00113 0.00184 

6 0.00030 0.00071 0.00149 0.00210 

표 4. ku의 MSD에 대한 영향 

Table 4. The effect of ku on MSD 

case\ku 40 60 80 100

1 0.00360 0.00415 0.00643 0.00698 

2 0.00443 0.00473 0.00605 0.00714 

3 0.01388 0.01484 0.01858 0.02076 

4 0.01190 0.01370 0.01600 0.01933 

5 0.01442 0.01372 0.01687 0.01982 

6 0.01004 0.01174 0.01574 0.01623 

To evaluate the performance quantitatively, the MSE and MSD 

was provided in the table-5 and the table-6. the performance of 

the model-based RL without pretraining was not included due to 

the occurrence of the divergence. However, it can be seen from 

the figure-3 that the model-based RL may provide reasonable 

performance when it does not diverge. The slide RL is shown to 

provide consistent MSE performance for all cases as the 

model-based RL does while the performance of two pretrained 

RL varies relatively significantly. The MSE of the slide RL is 

lower than the two pretrained RL by the order of 2 or so. The 

same trend can be observed for the MSD while the MSD is larger 

than MSE by the order of 1 or so for  all algorithms due to the 

delay and disturbance. Nonetheless, the slide RL provides MSD 

small enough to be used in many practical system environments. 

To see how consistent performance the slide RL provided, the 

ratio of initialization of which MSE or MSD less than 0.1 is 

shown in the table-7. It can be observed that the slide RL and the 

model-based algorithm have MSE and MSD less than  0.1 for all 

initializations in all cases.  

Some RL algorithms can provide good performance at 

convergence while other algorithms can converge quickly. Thus, 

it is important to assess the convergence characteristics of the 

slide RL. The figure-4 shows the MSE convergence of the slide 

RL for the case 1,3,4, and 6 which have a different number of 

agents. It can be observed that the model-based algorithm, the 

modified TD3(p), and the slide RL converges within 200 steps or 

so for all cases. The modified RL converges slowly since it learns 

how to converge at each step. The modified RL(p) converges 

faster than the modified RL since it already learned how to 

generate action. However, since it might not learn how to 

converge fast enough, its convergence speed is found to be slower 

than the fast ones. 

표 5. 기존 우수 알고리즘과 비교한 제안 알고리즘의 MSE 성능 

(x는 발산의 발생을 나타낸다.)

Table 5. MSE performance of the proposed algorithm in 

comparison with state of arts algorithms (x 

represents the occurrence of divergence)

case 1 3 4 6

model-based 
Alg.

0.000022 0.000034 0.000033 0.000017 

model-based 
RL

x x x x

model-based 
RL(p)

0.016820 0.012400 0.016580 0.055990 

modified TD3(p) 0.041020 0.188250 0.134127 0.026094 

slide RL 0.000277 0.000242 0.000223 0.000302 

표 6. 기존 우수 알고리즘과 비교한 제안 알고리즘의 MSD 성능 

(x는 발산의 발생을 나타낸다.)

Table 6. MSD performance of the proposed algorithm in 

comparison with state of arts algorithms (x 

represents the occurrence of divergence)

case 1 3 4 6

model-based 
Alg. 0.000131 0.000641 0.000671 0.000142 

model-based 
RL

x x x x

model-based 
RL(p)

0.305236 0.785603 1.181799 6.431354

modified TD3(p) 0.308835 5.598264 4.766102 0.995609

slide RL 0.003605 0.013879 0.011895 0.010042 

표 7. MSE와 MSD가 0.1보다 작은 값을 갖는 초기화의 비율 

Table. 7. The ratio of initialization which has the MSE and 

MSD less than 0.1 
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case 1 3 4 6

model-based 
Alg.

1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

model-based 
RL

0.05/0.00 0.10/0.00 0.05/0.00 0.00/0.00

model-based 
RL(p)

1.00/0.50 1.00/0.25 1.00/0.25 0.85/0.00

modified TD3(p) 0.90/0.30 0.40/0.15 0.65/0.05 0.95/0.20

slide RL 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

                   (a) case 1                                    (b) case 2 

                   (c) case 3                                    (d) case 4 

                   (e) case 5                                    (f) case 6 

그림 3. 모의실험을 위한 통신 그래프 모의 실험 경우에 대한 

MSE의 상자 그림 (x축의 레이블은 다음과 같다.model 

base alg., model-based RL, model-based RL(p), 

modified TD3(p), and slide RL. y축은 로그 스케일의 

MSE) 

Fig. 3. The boxplot of MSE for each case. (The x axis is 

labeled from the left to the right as follows. model base alg., 

model-based RL, model-based RL(p), modified TD3(p), and 

slide RL. y-axis is MSE in log scale)

                   (a) case 1                                    (b) case 3 

                   (c) case 4                                    (d) case 6 

그림 4 슬라이드 RL의 수렴 특성 (적색 : model-based 

algorithm, 녹색 : model-based RL, 청색 : 

model-based RL(p), 황색: modified TD3(p), and 

청록색 : slide RL. x측은 에피소드의 수. y축은 리턴)

Fig. 4. Convergence characteristics of the slide RL. (red : 

model-based algorithm, green : model-based RL, 

blue : model-based RL(p), yellow : modified 

TD3(p), and cyan : slide RL. x-axis and y-axis are 

the number of episodes and return respectively)

Ⅴ. Conclusions

The state of art RL algorithms for the consensus of a MAS 

have been observed to converge slowly or have unstable 

convergence characteristics having a dependency on 

initialization. To overcome these issues, the slide RL which 

accelerates the convergence and improves the stability of the 

control through deriving the state variable on the sliding surface 

and making it robust to uncertainties. The proposed slide RL 

was shown to provide comparable MSE performance and 

convergence speed to those of the model-based algorithm while 

it outperforms the existing state of art algorithms. 

Despite the superior performance of the slide RL, there 

remain many problems to be addressed further. while the slide 

RL was developed with the model-based RL, the conventional 

RL framework can be combined with the slide mode control. 

While the application of the slide RL to a control problem can 

be trivially straightforward, the application to the problem with 

a delayed reward or a vague system model is likely to 

necessitate the articulation of the surrogate of the sliding 

variable and surface. It will be also interesting to see how the 

sliding mode can be exploited to offline RL [27] to improve the 

performance.  
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