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[Abstract]

With advances in autonomous vehicles and networked control, there is a growing interest in the consensus control of a multi-agents
system to control multi-agents with distributed control beyond the control of a single agent. Since consensus control is a distributed control,
it is bound to have delay in a practical system. In addition, it is often difficult to have a very accurate mathematical model for a system.
Even though a reinforcement learning (RL) method was developed to deal with these issues, it often experiences slow convergence in the
presence of large uncertainties. Thus, we propose a slide RL which combines the sliding mode control with RL to be robust to the
uncertainties. The structure of a sliding mode control is introduced to the action in RL while an auxiliary sliding variable is included in the
state information. Numerical simulation results show that the slide RL provides comparable performance to the model-based consensus
control in the presence of unknown time-varying delay and disturbance while outperforming existing state-of-the-art RL-based consensus
algorithms.
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| . Introduction

With the rapid progress in network, computing, and control
technologies, many devices are controlled over a network. They
can be either controlled through a centralized processor, or each
own decentralized processor. However, the centralized
processor often experiences the limitation of the computational
complexity with the growing number of agents in a system
while the decentralized one often experiences the performance
degradation due to the limited information. The distributed
control has the tradeoff between the complexity and
performance through information exchange with a subset of the
objects in the system.

Depending on the operating environment, the goal of a
distributed control can be different. Among many different
control objectives, a consensus has been paid significant
attention recently. The consensus control of multiple agents can
be defined as controling each object to achieve a common goal.
The consensus control has been applied to many different fields
such as the coordination of robots [1], voltage and phase
synchronization of power networks [2], the altitude formation
of satellites [3], traffic control [4], group decision-making [5],
and network server load balancing [6].

In consensus control, each agent exchanges information with
neighbor agents. Thus, the structure of the graph representing
communication among agents has a critical impact on control
performance. The algebraic connectivity which is the second
smallest eigenvalue of the Laplacian matrix was shown to
determine the convergence speed of the consensus in a
continuous time domain [7]. A consensus algorithm converging
to the average of the initial state in a discrete-time was
proposed and the algebraic connectivity was shown to
determine the convergence of the corresponding consensus
algorithm [8]. The Laplacian matrix was proven to be an
optimal linear consensus algorithm for a multi-agent system
(MAS) with the first-order dynamics in the perspective of a
linear-quadratic-regulator (LQR) [9]. A hierarchical feedback
controller based on LQR for the consensus of a leader-follower
MAS was proposed to have a tradeoff between the complexity
and performance through an articulated graph structure [10].
Communication to exchange information is bound to have
delays. However, the delay in a control system can have an
effect on the stabilization of the system if it is not considered
properly in the development of the control algorithm [11]. A
linear matrix inequality (LMI) was exploited to derive a
sufficient condition for the average consensus of a MAS with
higher-order dynamics in the presence of time-varying delays
[12]. Using the Nyquist criterion, a consensus protocol was
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developed for a heterogenous MAS with bounded input delay
[13]. A sliding mode control was exploited to develop a robust
consensus control for a MAS with the second-order dynamics
in the presence of unknown time delay and bounded
disturbance [14]. A robust output feedback consensus control
was developed from a sufficient condition for the secure
consensus of a MAS to deal with sampling error and
deny-of-service (DOS) attacks [15].

While most researches have developed an algorithm from an
abstract mathematical model with assumptions and
preconditions, perfect system information is often unavailable.
To deal with this issue, a novel approach has been made with
reinforcement learning (RL). Combined with deep learning,
deep reinforcement learning has shown the potential to learn
efficiently in many different areas such as computer games
[16], controls [17], and robotics [18]. RL often tries to generate
an action to maximize the return which is the expected
cumulated reward. A popular method of realizing RL with a
neural network (NN) is to introduce two networks, an
actor-network to generate an action and a critic network to
estimate the action-state value. A policy iteration algorithm for
the consensus of a MAS with linear dynamics was developed
from the coupled Hamilton-Jacobi-Bellman equation with an
actor-critic NN [19]. Similarly, RL consensus algorithms were
designed by solving algebraic Riccati equation (ARE) for
approximate dynamic programming (ADP) [20][21]. An
identification NN was introduced for linear system
identification to stabilize the convergence of the actor-critic
networks for the consensus of a linear MAS further [22]. A
policy iteration algorithm for the consensus of a nonlinear MAS
was developed from ADP derived from an extra compensator
[23]. Online RL to solve the optimal consensus problem was
proposed for the consensus of a MAS with the second-order
dynamics [24].

While RL has the potential of providing a consensus
algorithm without explicit model knowledge, being sensitive to
parameterization, it often experiences the convergence problem.
The online RL in [24] applied to the consensus of a MAS with
the second-order dynamics with unknown time-varying delay
and disturbance was shown to converge very slowly in
comparison to the consensus algorithm based on supervised
deep learning [25]. To deal with the slow convergence, we
propose an RL with the structure of the sliding mode control,
which is called “slide RL”. The structure of the action follows
the sliding mode control which consists of a linear part and a
sliding part. The underlying motivation to introduce the
structure of sliding mode control to RL is that the sliding mode
control is robust to the uncertainties. It implies that RL and the
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sliding mode control can be considered as robust methods to the
Thus,
accelerate the convergence of the RL. Simulation results with

uncertainties. combining these two methods may
various system configurations show that the proposed slide RL

achieves near model-based performance without model
knowledge.

This paper is organized as follows. A system model for a
MAS with the second-order dynamics and the consensus
objectives are presented in section-I1I. The section-III provides
the derivation of the slide RL and a description of the
corresponding pseudo-code. In section-IV, the parameters of
the sliding RL were determined first from simulations first. The
performance of the slide RL was compared with the
model-based algorithm and the existing state of art consensus
RL algorithms. Some concluding remarks and the future

research are presented in section-V.

II. A System Model and Problem
Formulation

In this paper, a consensus of a leader-follow multi-agent
system with the second-order dynamics is considered. A
corresponding system model can be given as

a,(t) =, (t)+d, (t) (1)
where z,(t) is the second order derivative of the position z, (¢) of
the agent 4, v, (¢) is a control signal and d, (¢) is disturbance from
external sources such as wind. It is assumed that the system state
information can be obtained without measurement error. If there
is a measurement error, the state estimation algorithm needs to be
developed further, which is beyond the scope of this research. It is
also assumed that each agent transmits system information to a

the

communication range or pre-plan to satisfy some goal of

subset of agents which can be determined from
performance objective. A communication graph which consists of
edges and nodes holds this information. The edge and the node
represent the presence of communication and each agent
respectively. Let A be the adjacency matrix of the corresponding
communication graph and a;; be the element located as the ith
row and the jth column. ¢,; has the value of 1 when the agent
receives information from the agent j, otherwise 0.

The model-based algorithm usually takes the control signal as
a linear function of state difference in the absence of uncertainty.
In the presence of uncertainties, the control signal for a consensus
control can be represented as follows.

u, (£) = £(2,(t)) @)
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where 2, () is information available at time t for the agent 1.

£2,(t) can be written as

2,(t) ={x (t*.Tij),%_(t*qj),%(t*Tij)\jforaij =1}
Ulx 005 (0)

(©)

where 7;; is a communication delay from agent j to agent i. It is
assumed that the communication delay is unknown and time-
varying. The time-varying unknown delay has an effect on the
stabilization of the control and the convergence speed of the
control.

The goal of the consensus control for a leader-followers MAS
with the second-order dynamics is to synchronize the position of
each follower agent to that of the leader agent. It can be
represented as

4, (t) =, (t) =, (t)
limlg, ;(#)=0, fori=1,2,---,N

t— oo

)
)

where ¢ (¢) is often called as a disagreement error. Even though
the asymptotic convergence is considered, the convergence speed
can be of practical interest. The following local error has been

often used as a metric to measure the degree of consensus.

N
e, ;)= a,(a;(t)—x,(t))

j=0

N
€)= Ya, (&, (1) ()

ji=0

(©)

@)

lll. Slide Reinforcement Learning

Sliding mode control has been researched to develop robust
control in the presence of uncertainties. The basic principle in the
sliding mode control is to pull up the state into the sliding surface
where the state trajectory is designed to be independent of
uncertainties. A model based RL[24] is exploited to be equipped
with sliding mode. Since the sliding mode control is a
model-based control, the model-based RL may provide a better fit
to allow sliding mode in its structure. For the purpose of the
implementation, The slide RL is developed for the MAS in a
discrete time which is a sampled version of the continuous time
system model with the sampling period 7.

A discounted action-value function which measures the value
of action for a given state can be defined as follows

[eS)

_ -k, _
Vie= E]ﬁp Tk =Tin T YVik
p=k

®)



Tik = Sngy:Sy;k + 67{1« eint “;TkR“]k ©
where 1, isareward signal of the agent i at time step &, yisa
discounting factor to determine how much future reward will be
considered, and P;, @), and R, are symmetric weight matrices
with dimensions associated with s, ;, e, ; and u, ; respectively.
To exploit the sliding mode, u;,; can be structured in the

following way [14].

Ui = Upreik kusz'gn(sygk) (10)
where £k, is a weight controlling the effect of sliding mode, and
sign() is a sign function which takes a 1 if input is positive, 0
otherwise.

We take the same procedure to derive the optimal control
policy as exploited in [24]. Let Vl* . be the optimal value function
which satisfies the coupled Hamilton-Jacobian equations. The
dynamic programing equation for Vl*k can be written as from (8)

*

Vie= 1k(“jk)+’YV1*k+1 an

where uj & 1s an optimal action of the agent ¢ at time step k. From

the first-order optimality condition, the optimal action can be

expressed as
* *
o) 0V
* =7 * (12)
ou, 1, ou, 1.

For a given s, ;, (12) can be rewritten as

* *
ariﬁk(u}n’e‘,i#k) _ a‘/7'“,1«+1
- =—n— (13)
auprexi,#k aupre#i,#k

With exploiting the derivation procedures and the fact that the
discounted value function V., =2, ;4192441 can be

represented as quadratic function, (13) can be arranged as

ar; ’(u*xr’ei ) Al
el 2 RN a) G@+ 8Tz, (4
auprej,#k 2 j=0 " "

where G= [T, 0 T,0] with the first 0 is a scalar and the last 0 is

a row vector with the dimension depending on the number of

. T T T T 1T
neighbor agents, z,;; = [s]k €k Uiy uﬁk] ,and u

&8 the

concatenated neighbor actions at time step k. With limiting the
actor network as a linear network, the proposed slide RL for the
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consensus of a leader-followers MAS with the second-order
dynamics can be summarized as the figure-1 which is modified
from the pseudo-code in [24]. It first initializes the parameters
and variables. Then, it repeats the process from steps 1 to 6 at
each time step. It generates the partial action from the actor
network, with which the action is determined from combining the
sliding part. Then, it calculates the action-state value and target
partial action With the temporal difference error and the
difference between the partial action and the target partial action,

the critic network and the actor network are updated respectively.

0. Initialization
Initialize elements of W, with N(0,0;)
Initialize the nondiagonal elements of ® with N(0,5;)
Initialize the diagonal elements of ® with o}
Initialize x, with N(0,0;) and v, with N(0,57)
Set learning rates k , and k.,
Set P, O,, and R,

T T
Loty =Wy, where y, . =le. ., €]
2ou =u,,,, —k,sign(s,,) where s, =ce,  +e,,

_.T _ rr T T T
3. Vii =Yein OiVein where Veik = [Si,k Crik Gk Uik u[,’k]

1o < T
4. U = _ER[' 7(zai,j)G(¢)i +(I)i )yl‘,i,k
=0

S W, =W, =K,8,Vaix Where &, =(u,, —1;;)

i i

6.0, =D, -k, &, V., where &, =V, — (1, +7V,,))

a8 1. X=A-FEXA} O olo|™E A|ARS] ANMMAE £
£2l0|= RL 78 /A ZE
Fig. 1. Pseudo Code for the implementation of the slide RL for

o

the consensus of a leader-followers MAS

V. Experiment Results

@@Ia DO @:@
(A) B) °
©

Jg 2. 2o|AeE flet sS4 a3z

Fig. 2. Communication graphs used for simulation
In this section, the performance of the proposed slide RL is

assessed with numerical simulations. To this end, the descriptions

of the operations of a MAS will be provided with the
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parameterization and network structures of the neural networks
for RL. The performance of the slide RL will be compared with
several states of art methods.

Following the system configurations used in [25], 6 different
communications graphs shown in the figure-2 were considered to
assess the applicability of the proposed method to various
environments. The number of nodes is 5 to 10 while the
maximum number of neighbor nodes is 2 for the simplicity of the
simulation. Delay, disturbance, and the dynamics of the leader
agents were configured differently as presented in the table-1 and
the table-2 where k and 1 are indices for agents. Different
disturbance with the same envelope is applied to each agent. The
delay at each communication link is different while the maximum
delay is 0.5 seconds for every configuration.

Comparing state of art algorithms were configured as follows.
The actor network for the modified TD3 with pretraining was
configurated to have one hidden layer with 256 nodes and linear
activation, and an output layer with 1 output node and
hyper-tangent activation. The critic network was configured to
have 3 hidden layers with a number of nodes, 32,256, and 256,
and an output layer with one node and linear activation. The
model-based RL and the model-based RL(p) were configured
with following the description in [24][26]. Please refer to the
details of the comparing algorithms in [24][25][26].

The slide RL was configured to have the same structure as the
model-based RL except that the square of the sliding variable is
added to the reward. Four important parameters were found to be
critical in the convergence of the slide RL. Those are the
initialization of the weight matrix W, for generating action, the
initialization of the weight matrix &; for determining the
action-state value, the learning rates, «, and «, for the actor
network and the critic networks, and the sliding mode weight &, .
W, and &, are initialized with gaussian random variable with
mean 0 and standard deviation, o, and o, respectively.
Depending on these parameters, the state of an agent was
observed to diverge with some different initializations for the
same system configuration. To find a proper parameterization,
different combinations of o, 0,, and «, were tried while k, was
fixed at 100, and «, was set as equal to «,. After having many
different heuristic trials. o, of 10”, o, of 10”, and #, of 5x10 "
were found to provide stable convergence with different
initializations for each system configuration. Increasing r, to
5x10” with fixing o, and o, as 10" resulted in the divergence for
all system configurations. Increasing o, or o, to 10” with fixing
x, as 5x10"° did not incur any divergence while it degrades the
mean square error (MSE) performance slightly. These results may
imply that the performance of slide RL has strong dependency on
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the learning rate while it has marginal dependency on the

initializations of W, and &,. From these results, o, o,, and &,

and r, were setas 5x10"° unless otherwise stated.

E 1. ZH AAE FHoM XX olo|MES| TI5Eel Qf2t

Table 1. The acceleration of the leader agent and
disturbance for each system configuration

case | Acceleration of leader agent Disturbance
1 cos(7t) +cos(3t) sin(11¢+ &) +cos (13t + )
2 [cos(7t) +cos(3t)](2—€") sin(11t+k)(3—¢"")
3 [cos(7t) +cos(3t)](2—¢ ) sin(11£+k)3—¢" ")
4 [cos(7t) +cos(3t)](2—¢ ) sin(112+k)3—¢" ")
5 [cos(7t) +cos(3t)](2—¢ ) sin(11£+k)3—¢" ")
6 |cos(17t)(3—e ")(2+4 cos(13t)) 71| cos(@3t+k) (e "1 4+1)—c

B 2. 2t A2 THoM 4 JehZet X
Table 2. The communication graph and delay for each
system configuration

case | Graph Delay
1 A 0.25(1+ cos (t + (k+1)7/7))
2 A 0.25(1 + cos (111t + (k+1)7x/7))
3 B 0.5(1+ef"'1(}"+m)71
4 c 0.5(1*(1+67“'1(k+”t)71)
5 D 0.5(1+ cos (t + (k+1)m/7))(2+e~ 1D
6 D 0.5(1—0.5(14 cos(t + (k+1)m/7))e” "1+

However, depending on &

[

the performance of the slide RL
may vary. To examine the effect of &,

slide RL was evaluated for 4 different %, s. The table-3 shows the
MSE with different k,s. It is observed that the MSE marginally

the performance of the

increases with increasing &, for all system configurations. A
similar trend can be found on the mean square of disagreement
(MSD) in the table-4 even though the effect of %, on MSD is not
as significant as on MSE. When %, was set as 20 or 30, some
divergences for the case 5 and case 6 were observed. This can be
expected in the sense that %, is required to be greater than some
value to provide stable control performance in a sliding mode
control. Since k, of 40 provides the lowest MSE and MSD while
saving the control efforts and providing stable convergence, &,
was set as 40 throughout this simulation unless otherwise stated.
After optimizing the parameters of the slide RL, the
performance of the slide RL were compared with the existing
state of art methods. They are model-based RL [24], pretrained
model-based RL denoted as model-based RL(p)[26], pretrained
modified TD3 denoted as modified TD3(p) [26]. The
performances of the slide RL were shown for each case in
figure-2. The slide RL was observed to provide comparable
performance to the model-based algorithm with the best



performance. The model-based RL without pretraining
experienced divergence for some initializations for each case
while the two pretrained RL algorithms provide consistent similar
performance. The slide RL is also found to outperform the
existing RLs in terms of the average MSE while the variance of
the MSE of the slide RL is the smallest among considered RL
algorithms for all cases.

. ky2| MSEO]| cist &k
Table 3. The effect of k, on MSE

case\ky 40 60 80 100
1 0.00027 0.00070 0.00147 0.00256
2 0.00021 0.00056 0.00117 0.00203
3 0.00024 0.00064 0.00120 0.00223
4 0.00022 0.00056 0.00111 0.00167
5 0.00022 0.00056 0.00113 0.00184
6 0.00030 0.00071 0.00149 0.00210

X 4. k.2l MSDof| gt ¥&
Table 4. The effect of ku on MSD

case\k, 40 60 80 100
1 0.00360 0.00415 0.00643 0.00698
2 0.00443 0.00473 0.00605 0.00714
3 0.01388 0.01484 0.01858 0.02076
4 0.01190 0.01370 0.01600 0.01933
5 0.01442 0.01372 0.01687 0.01982
6 0.01004 0.01174 0.01574 0.01623

To evaluate the performance quantitatively, the MSE and MSD
was provided in the table-5 and the table-6. the performance of
the model-based RL without pretraining was not included due to
the occurrence of the divergence. However, it can be seen from
the figure-3 that the model-based RL may provide reasonable
performance when it does not diverge. The slide RL is shown to
provide consistent MSE performance for all cases as the
model-based RL does while the performance of two pretrained
RL varies relatively significantly. The MSE of the slide RL is
lower than the two pretrained RL by the order of 2 or so. The
same trend can be observed for the MSD while the MSD is larger
than MSE by the order of 1 or so for all algorithms due to the
delay and disturbance. Nonetheless, the slide RL provides MSD
small enough to be used in many practical system environments.
To see how consistent performance the slide RL provided, the
ratio of initialization of which MSE or MSD less than 0.1 is
shown in the table-7. It can be observed that the slide RL and the
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model-based algorithm have MSE and MSD less than 0.1 for all
initializations in all cases.

Some RL algorithms can provide good performance at
convergence while other algorithms can converge quickly. Thus,
it is important to assess the convergence characteristics of the
slide RL. The figure-4 shows the MSE convergence of the slide
RL for the case 1,3,4, and 6 which have a different number of
agents. It can be observed that the model-based algorithm, the
modified TD3(p), and the slide RL converges within 200 steps or
so for all cases. The modified RL converges slowly since it learns
how to converge at each step. The modified RL(p) converges
faster than the modified RL since it already learned how to
generate action. However, since it might not learn how to
converge fast enough, its convergence speed is found to be slower
than the fast ones.

E 5. 7|F 9 02|50 5|wdk Mok iz Ee| MSE M5
(x= 2Hbe| WS LIERHCE)
Table 5. MSE performance of the proposed algorithm in
comparison with state of arts algorithms (x
represents the occurrence of divergence)

case 1 3 4 €
modeA\EJbased 0.000022 | 0.000034 | 0.000033 |0.000017
mode}\q—fased X X X X

model-based

RL(p) 0.016820

0.012400 | 0.016580 | 0.055990

modified TD3(p) 0.041020 | 0.188250 | 0.134127 | 0.026094

slide RL 0.000277 | 0.000242 | 0.000223 | 0.000302

E 6. 7|E 9 2|5 dwEk Mot due[Ee| MSD 45
(x= 2Hbe| WS LIERHCE)
Table 6. MSD performance of the proposed algorithm in
comparison with state of arts algorithms (x
represents the occurrence of divergence)

case 1 3 4 6
mOdeA‘Efased 0.000131 | 0.000641 | 0.000671 | 0.000142
mode\R—t)ased X X X X
mOdF?‘L‘(g)ased 0305236 | 0.785603 | 1.181799 | 6.431354

modified TD3(p) 0.308835 | 5.598264 | 4.766102 | 0.995609

slide RL 0.003605 | 0.013879 | 0.011895 | 0.010042

E 7. MSE®2} MSD7t 0.12LCt 22 gt2 2= 7|k Hlg
Table. 7. The ratio of initialization which has the MSE and
MSD less than 0.1
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case 1 3 4 6
mOdeA'l‘gbased 1.00/1.00 | 1.00/1.00 | 1.00/1.00 | 1.00/1.00
modelbased | 0,05/0.00 | 0.10/0.00 | 0.05/0.00 | 0.00/0.00
mOde'L‘(g)ased 1.00/0.50 | 1.00/0.25 | 1.00/0.25 | 0.85/0.00

modified TD3(p) 0.90/030 | 0.40/0.15 | 0.65/0.05 | 0.95/0.20
side RL | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 | 1.00/1.00
= s ——
(a) case 1 (b) case 2
=S|
(c)case 3 (d) case 4
=%
Ty e + +
—— = —— —
(e) case 5 (f) case 6

a3 3. ZojMEs flst 84l J= 2o MY Z<o| et
MSES| &t J8 (xZe| 2folg2 ch2at Zth.model
base alg., model-based RL, model-based RL(p),
modified TD3(p), and slide RL. y§2 21 AAH Y9
MSE)

Fig. 3. The boxplot of MSE for each case. (The x axis is

labeled from the left to the right as follows. model base alg.,

model-based RL, model-based RL(p), modified TD3(p), and

slide RL. y-axis is MSE in log scale)

I 2 b 0 0

(a) case 1 (b) case 3
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(c) case 4

(d) case 6

232

33 4 £2/0|E RLe| £ £4 (MM : model-based
algorithm, =4 : model-based RL, &AM :
model-based RL(p), &4H: modified TD3(p), and
HEM : slide RL. x52 olz|aE0| £ yE2 2|H)

Fig. 4. Convergence characteristics of the slide RL. (red :
model-based algorithm, green : model-based RL,
blue : model-based RL(p), yellow : modified
TD3(p), and cyan : slide RL. x-axis and y-axis are
the number of episodes and return respectively)

V. Conclusions

The state of art RL algorithms for the consensus of a MAS
have been observed to converge slowly or have unstable
convergence characteristics having a dependency on
initialization. To overcome these issues, the slide RL which
accelerates the convergence and improves the stability of the
control through deriving the state variable on the sliding surface
and making it robust to uncertainties. The proposed slide RL
was shown to provide comparable MSE performance and
convergence speed to those of the model-based algorithm while
it outperforms the existing state of art algorithms.

Despite the superior performance of the slide RL, there
remain many problems to be addressed further. while the slide
RL was developed with the model-based RL, the conventional
RL framework can be combined with the slide mode control.
While the application of the slide RL to a control problem can
be trivially straightforward, the application to the problem with
a delayed reward or a vague system model is likely to
necessitate the articulation of the surrogate of the sliding
variable and surface. It will be also interesting to see how the
sliding mode can be exploited to offline RL [27] to improve the

performance.
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