• Title/Summary/Keyword: soft tissue deformation

Search Result 22, Processing Time 0.029 seconds

Measurement of Surface Strain on Soft Biological Tissues Using Irregular Grid Pattern (불규칙적인 격자망을 이용한 생체 연조직의 곡면변형률 측정)

  • Lee, Jun Sik;Kim, Ki Hong;Kim, Hyung Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1051-1057
    • /
    • 2013
  • In this study, an automatic surface-strain measurement system called "ASIAS-bio" has been developed. This system can be used even in cases in which it is very difficult to apply a regular grid pattern necessary for measuring surface-strain, such as curved or uneven surfaces; surfaces damaged by corrosion or contamination; or soft materials such as rubber, foam, and biological tissues. This system works independently of the measurement conditions including the material and its surface condition, grid pattern and size, grid marking method, and degree of deformation. A comparison between the strain distributions of the sheet metal parts measured by using this system and those obtained by a commercial system showed that this system was sufficiently reliable. In addition, the deformation of the swine joint capsule and human knee skin was measured by using this system to demonstrate its usefulness.

TIME-DEPENDENT FRACTURE OF ARTICULAR CARTILAGE: PART 1 - THEORY & VALIDATION

  • Mun, M.S.;Lewis, J.L.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.27-33
    • /
    • 1995
  • A time-dependent large deformation fracture theory is developed for application to soft biological tissues. The theory uses the quasilinear viscoelastic theory of Fung, and particularizes it to constitutive assumptions on polyvinyl-chloride (PVC) (Part I) and cartilage (Part II). This constitutive theory is used in a general viscoelastic theory by Christensen and Naghdi and an energy balance to develop an expression for the fracture toughness of the materials. Experimental methods are developed for measuring the required constitutive parameters and fracture data for the materials. Elastic stress and reduced relaxation functions were determined using tensile and shear tests at high loading rates with rise times of 25-30 msec, and test times of 150 sec. The developed method was validated, using an engineering material, PVC to separate the error in the testing method from the inherent variation of the biological tissues. It was found that the the proposed constitutive modeling can predict the nonlinear stress-strain and the time-dependent behavior of the material. As an approximation method, a pseudo-elastic theory using the J-integral concept, assuming that the material is a time-independent large deformation elastic material, was also developed and compared with the time-dependent fracture theory. For PVC. the predicted fracture toughness is $1.2{\pm}0.41$ and $1.5{\pm}0.23\;kN/m$ for the time-dependent theory and the pseudo-elastic theory, respectively. The methods should be of value in quantifying fracture properties of soft biological tissues. In Part II, an application of the developed method to a biological soft tissue was made by using bovine humeral articular cartilage.

  • PDF

Tissue conditioner in edentulous patients, depending on the time and the thickness of the changes affect the dimensional stability (무치악 환자에서 조직양화제(tissue conditioner)가 시간과 두께에 따라 체적안정성의 변화에 미치는 영향)

  • Shim, Youn-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3794-3801
    • /
    • 2010
  • This study evaluated the linear dimensional changes with the factor of time and thickness using of three commercially available tissue conditioners (Coe-Comport, Visco-Gel, Soft-Liner). The thickness of materials were changed (1.5mm, 3.0mm) and the percentage changes in dimension were measured at 1h(baseline), 12h, 24h, 3 days and 7days after specimen preparation. The obtained data were analyzed by ANOVA with the SAS/PC statistical package. From the results, large differences appear between the various tissue conditioners. The results suggested that the period recommended for forming functional impression would be 36h to 3days after insertion in the mouth. Depending on the type of tissue conditioner over time, as there were significant differences in the elastic change(p<0.05). Tissue conditioner of the 1.5mm, 3.0mm thickness were significantly different by the dimensional stability(p<0.05). Elastic deformation of the ideal itself, and resilient when compared only the look, Visco-Gel 3.0mm group, stability was the most stable volume. In addition, it is important to select tissue conditioners suitable for functional impression because of the wide range of dimensional stability among the materials.

REVIEW OF COMPUTATIONAL MODELS FOR FOOTWEAR DESIGN AND EVALUATION (신발 설계 및 평가를 위한 컴퓨터 모델)

  • Cheung, Jason Tak-Man;Yu, Jia;Zhang, Ming
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.13-25
    • /
    • 2009
  • Existing footwear biomechanics studies rely on simplified kinetics and kinematics, plantar pressure and muscle electromyography measurements. Because of the complexity of foot-shoe interface and individualized subject response with different footwear, consistent results regarding the biomechanical performance of footwear or footwear components can yet be achieved. The computational approach can be an efficient and economic alternative to study the biomechanical interactions of foot and footwear. Continuous advancement in numerical techniques as well as computer technology has made the finite element method a versatile and successful tool for biomechanics researchdue to its capability of modelling irregular geometrical structures, complex material properties, and complicated loading and boundary conditions. Finite element analysis offers asystematic and economic alternative in search of more in-depth biomechanical information such as the internal stress and strain distributions of foot and footwear structures. In this paper, the current establishments and applications of the computational approach for footwear design and evaluation are reviewed.

Cell-Assisted Lipotransfer for the Treatment of Parry-Romberg Syndrome

  • Castro-Govea, Yanko;De La Garza-Pineda, Oscar;Lara-Arias, Jorge;Chacon-Martinez, Hernan;Mecott-Rivera, Gabriel;Salazar-Lozano, Abel;Valdes-Flores, Everardo
    • Archives of Plastic Surgery
    • /
    • v.39 no.6
    • /
    • pp.659-662
    • /
    • 2012
  • Progressive facial hemiatrophy, also known as Parry-Romberg syndrome, is a progressive and self-limited deformation of the subcutaneous tissue volume on one side of the face that creates craniofacial asymmetry. We present the case of a patient with a five-year history of progressive right facial hemiatrophy, who underwent facial volumetric restoration using cell-assisted lipotransfer (CAL), which consists of an autologous fat graft enriched with adipose-derived stem cells (ASCs) extracted from the same patient. ASCs have the capacity to differentiate into adipocytes. They also promote angiogenesis, release angiogenic growth factors, and some can survive as stem cells. The use of autologous fat as a filler in soft tissue atrophy has been satisfactory in patients with mild and moderate Parry-Romberg syndrome. Currently, CAL has showed promising results in the long term by decreasing the rate of fat reabsorption. The permanence and stability of the graft in all the injected areas has showed that autologous fat grafts enriched with stem cells could be a promising technique for the correction of defects caused by this syndrome.

The Fabrication of Accurate Removable Partial Denture by Analyzing the Failed Cases (실패 증례 분석을 통한 국소의치 제작 시 주의사항)

  • Lee, Ji-Young;Lee, Kyoung-Lok;Heo, Yu-Ri;Son, Mee-Kyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.280-289
    • /
    • 2013
  • Removable partial denture for oral function recovery of partial edentulous patients is a complicated treatment because the dentist should consider both hard tissue and soft tissue. Removable partial denture produced without consideration of precise design for each component and rotation of denture may cause fracture, deformation or loss of abutment teeth. In case of failure to achieve a proper denture, the reason of failure should be analyzed and the result must be applied to later RPD cases. Finding the solutions through the failed denture cases will help patients use their dentures more comfortably and keep their sound residual teeth and tissue longer.

Diagnosis and Pathophysiology of Hallux Valgus (무지 외반증의 진단 및 병태생리)

  • Jang, Kyu-Sun;Kim, Tae Wan;Kim, Hak Jun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.2
    • /
    • pp.43-47
    • /
    • 2014
  • Hallux valgus is a lateral deviation of the first phalanx and medial deviation of the first metatarsal at the first metatarsophalangeal (MP) joint. Its incidence has increased due to developing footwear. The etiologies include fashion footwear, genetic causes, anatomical abnormality around the foot, rheumatoid arthritis, and neuromuscular disorders. Physiologic alignment of the first MP joint is maintained by congruent and symmetric alignment of the articular surface of the first proximal phalanx and first metatarsal head, physiologic relationship of the distal first metatarsal articular surface and the first metatarsal shaft axis, and stable balance of soft tissue around the first MP joint and stable tarsometatarsal joint. Several factors have been associated with hallux valgus, including pes planus, hypermobility of the first tarsometatarsal joint, flattened shape of the first metatarsal head, increased distal metatarsal articular angle, and deformation of the medial capsular integrity. History and physical examination are very important to diagnosis of hallux valgus. Simple radiography provides information on deformity, particularly in weight-bearing anteroposterior and lateral radiographs. Understanding the etiologies and pathophysiology is very important for success in treatment of patients with hallux valgus.

3D Non-Rigid Registration for Abdominal PET-CT and MR Images Using Mutual Information and Independent Component Analysis

  • Lee, Hakjae;Chun, Jaehee;Lee, Kisung;Kim, Kyeong Min
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.311-317
    • /
    • 2015
  • The aim of this study is to develop a 3D registration algorithm for positron emission tomography/computed tomography (PET/CT) and magnetic resonance (MR) images acquired from independent PET/CT and MR imaging systems. Combined PET/CT images provide anatomic and functional information, and MR images have high resolution for soft tissue. With the registration technique, the strengths of each modality image can be combined to achieve higher performance in diagnosis and radiotherapy planning. The proposed method consists of two stages: normalized mutual information (NMI)-based global matching and independent component analysis (ICA)-based refinement. In global matching, the field of view of the CT and MR images are adjusted to the same size in the preprocessing step. Then, the target image is geometrically transformed, and the similarities between the two images are measured with NMI. The optimization step updates the transformation parameters to efficiently find the best matched parameter set. In the refinement stage, ICA planes from the windowed image slices are extracted and the similarity between the images is measured to determine the transformation parameters of the control points. B-spline. based freeform deformation is performed for the geometric transformation. The results show good agreement between PET/CT and MR images.

Numerical and Experimental Study on Mechanical Properties of Gelatin as Substitute for Brain Tissue (뇌 조직의 기계적 물성에 관한 젤라틴을 이용한 수치해석 및 실험적 연구)

  • Bahn, Yong;Choi, Deok-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.169-176
    • /
    • 2015
  • The mechanical properties of living tissues have been major subjects of interest in biomechanics. In particular, the characteristics of very soft materials such as the brain have not been fully understood because experiments are often severely limited by ethical guidelines. There are increasing demands for studies on remote medical operations using robots. We conducted compression tests on brain-like specimens made of gelatin to find substitutes with the mechanical properties of brain tissues. Using a finite element analysis, we compared our experimental data with existing data on the brain in order to establish material models for brain tissues. We found that our substitute models for brain tissues effectively simulated their mechanical behaviors.

Real-Time 3D Volume Deformation and Visualization by Integrating NeRF, PBD, and Parallel Resampling (NeRF, PBD 및 병렬 리샘플링을 결합한 실시간 3D 볼륨 변형체 시각화)

  • Sangmin Kwon;Sojin Jeon;Juni Park;Dasol Kim;Heewon Kye
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 2024
  • Research combining deep learning-based models and physical simulations is making important advances in the medical field. This extracts the necessary information from medical image data and enables fast and accurate prediction of deformation of the skeleton and soft tissue based on physical laws. This study proposes a system that integrates Neural Radiance Fields (NeRF), Position-Based Dynamics (PBD), and Parallel Resampling to generate 3D volume data, and deform and visualize them in real-time. NeRF uses 2D images and camera coordinates to produce high-resolution 3D volume data, while PBD enables real-time deformation and interaction through physics-based simulation. Parallel Resampling improves rendering efficiency by dividing the volume into tetrahedral meshes and utilizing GPU parallel processing. This system renders the deformed volume data using ray casting, leveraging GPU parallel processing for fast real-time visualization. Experimental results show that this system can generate and deform 3D data without expensive equipment, demonstrating potential applications in engineering, education, and medicine.