• Title/Summary/Keyword: snare protein

Search Result 13, Processing Time 0.018 seconds

Prion Protein Does Not Interfere with SNARE Complex Formation and Membrane Fusion

  • Yang, Yoo-Soo;Shin, Jae-Il;Shin, Jae-Yoon;Oh, Jung-Mi;Lee, Sang-Ho;Yang, Joo-Sung;Kweon, Dae-Hyuk
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.782-787
    • /
    • 2009
  • In prion disease, spongiform neurodegeneration is preceded by earlier synaptic dysfunction. There is evidence that soluble N-ethylmaleimide sensitive factor attachment receptor (SNARE) complex formation is reduced in scrapie-infected in vivo models, which might explain this synaptic dysfunction because SNARE complex plays a crucial role in neuroexocytosis. In the present study, however, it is shown that prion protein (PrP) does not interfere with SNARE complex formation of 3 SNARE proteins: syntaxin 1a, SNAP-25, and synaptobrevin. Sodium dodecyl sulfate-resistant complex formation, SNAREdriven membrane fusion, and neuroexocytosis of PC12 cells were not altered by PrP. Thus, PrP does not alter synaptic function by directly interfering with SNARE complex formation.

SNARE Assembly and Membrane Fusion: A Paramagnetic Electron Magnetic Resonance Study

  • Kweon, Dae-Hyuk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.32-32
    • /
    • 2003
  • In the neuron, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) assembly plays a central role in driving membrane fusion, a required process for neurotransmitter release. In the cytoplasm, vesicular SNARE VAMP2 (vesicle-associated membrane protein 2) engages with two plasma membrane SNAREs syntaxin 1A and SNAP-25 (synaptosome-associated protein of 25 kDa) to form the core complex that bridges two membranes. While various factors regulate SNARE assembly, the membrane also plays the regulatory role by trapping VAMP2 in the membrane. The fluorescence and EPR analyses revealed that the insertion of seven C-terminal core-forming residues into the membrane controls complex formation of the entire core region, even though preceding 54 core-forming residues are fully exposed and freely moving. When two interfacial Trp residues in this region were replaced with hydrophilic serine residues, the mutation supported rapid complex formation.

  • PDF

Interaction of Human α-Synuclein with VTI1B May Modulate Vesicle Trafficking

  • Lee, Hak-Joo;Lee, Kyung-Hee;Im, Ha-Na
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3071-3075
    • /
    • 2012
  • Human ${\alpha}$-synuclein is the major component of the protein aggregates known as Lewy bodies or Lewy neurites, which define the intracellular lesions of Parkinson's disease. Despite extensive efforts, the physiological function of ${\alpha}$-synuclein has not yet been elucidated in detail. As an approach to defining its function, proteins that interacted with ${\alpha}$-synuclein were screened in phage display assays. The SNARE protein vesicle t-SNARE-interacting protein homologous 1B (VTI1B) was identified as an interacting partner. A selective interaction between ${\alpha}$-synuclein and VTI1B was confirmed by coimmunoprecipitation and GST pull-down assays. VTI1B and ${\alpha}$-synuclein were colocalized in N2a neuronal cells, and overexpression of ${\alpha}$-synuclein changed the subcellular localization of VTI1B to be more dispersed throughout the cytosol. Considering the role played by VTI1B, ${\alpha}$-synuclein is likely to modulate vesicle trafficking by interacting with a SNARE complex.

Effect of Rhodiola Sachalinensis Administration and Endurance Exercise on Insulin Sensitivity and Expression of Proteins Related with Glucose Transport in Skeletal Muscle of Obese Bucker Rat (홍경천 섭취와 운동수행이 비만 쥐의 인슐린 민감도와 골격근내 당수송 관련 단백질 발현에 미치는 영향)

  • Oh Jae-Keun;Shin Young-Oh;Jung Hee-Jung;Lee Jung-Eun
    • Journal of Nutrition and Health
    • /
    • v.39 no.4
    • /
    • pp.323-330
    • /
    • 2006
  • Peripheral insulin resistance in obese/type II diabetes animals results from an impairment of insulin-stimulated glucose uptake into skeletal muscle. Insulin stimulate the translocation of GLUT4 from intracellular location to the plasma membrane. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) is implicated in mediation of fusion of GLUT4-containing vesicle with the plasma membrane. Present study investigated regulatory effects of Rhodiola sachalinensis administration and exercise training on the expression of GLUT4 protein and SNAREs protein in skeletal muscles of obese Zucker rats. Experimental animals were randomly assigned into one of five groups ; lean control(LN), obese control(OB), exercise-treated(EXE), Rhodiola sachalinensis-treated(Rho), combine of Rho & EXE (Rho-EXE). All animals of exercise training (EXE, Rho-EXE) performed treadmill running for 8 weeks, and animals of Rho groups (Rho, Rho-EXE) were dosed daily by gastric gavage during the same period. After experiment, blood were taken for analyses of glucose, insulin, and lipids levels. Mitochondrial oxidative enzyme (citrate synthase, CS ; $\beta$-hydroxyacyl-CoA dehydrogenase, $\beta$-HAD) activity were analysed. Skeletal muscles were dissected out for analyses of proteins (GLUT4, VAMP2, syntaxin4, SNAP23). Results are as follows. Exercise and/or Rhodiola sachalinensis administration significantly reduced body weight and improved blood lipids (TG, FFA), and increased insulin sensitivity. Endurance exercise significantly increased the activity of mitochondrial enzymes and the expression of GLUT4 protein, however, administration of Rhodiola sachalinensis did not affect them. The effect of exercise and/or Rhodiola sachalinensis administration on the expression of SNARE proteins was unclear. Our study suggested that improvement insulin sensitivity by exercise and/or Rhodiola sachalinensis administration in obese Zucker rats is independent of expression of SNARE proteins.

Altered Complexin Expression in Psychiatric and Neurological Disorders: Cause or Consequence?

  • Brose, Nils
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.7-19
    • /
    • 2008
  • Complexins play a critical role in the control of fast synchronous neurotransmitter release. They operate by binding to trimeric SNARE complexes consisting of the vesicle protein Synaptobrevin and the plasma membrane proteins Syntaxin and SNAP-25, which are key executors of membrane fusion reactions. SNARE complex binding by Complexins is thought to stabilize and clamp the SNARE complex in a highly fusogenic state, thereby providing a pool of readily releasable synaptic vesicles that can be released quickly and synchronously in response to an action potential and the concomitant increase in intra-synaptic $Ca^{2+}$ levels. Genetic elimination of Complexins from mammalian neurons causes a strong reduction in evoked neurotransmitter release, and altered Complexin expression levels with consequent deficits in synaptic transmission were suggested to contribute to the etiology or pathogenesis of schizophrenia, Huntington's disease, depression, bipolar disorder, Parkinson's disease, Alzheimer's disease, traumatic brain injury, Wernicke's encephalopathy, and fetal alcohol syndrome. In the present review I provide a summary of available data on the role of altered Complexin expression in brain diseases. On aggregate, the available information indicates that altered Complexin expression levels are unlikely to have a causal role in the etiology of the disorders that they have been implicated in, but that they may contribute to the corresponding symptoms.

Functions of the Plant Qbc SNARE SNAP25 in Cytokinesis and Biotic and Abiotic Stress Responses

  • Won, Kang-Hee;Kim, Hyeran
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.313-322
    • /
    • 2020
  • Eukaryotes transport biomolecules between intracellular organelles and between cells and the environment via vesicle trafficking. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE proteins) play pivotal roles in vesicle and membrane trafficking. These proteins are categorized as Qa, Qb, Qc, and R SNAREs and form a complex that induces vesicle fusion for targeting of vesicle cargos. As the core components of the SNARE complex, the SNAP25 Qbc SNAREs perform various functions related to cellular homeostasis. The Arabidopsis thaliana SNAP25 homolog AtSNAP33 interacts with Qa and R SNAREs and plays a key role in cytokinesis and in triggering innate immune responses. However, other Arabidopsis SNAP25 homologs, such as AtSNAP29 and AtSNAP30, are not well studied; this includes their localization, interactions, structures, and functions. Here, we discuss three biological functions of plant SNAP25 orthologs in the context of AtSNAP33 and highlight recent findings on SNAP25 orthologs in various plants. We propose future directions for determining the roles of the less well-characterized AtSNAP29 and AtSNAP30 proteins.

Alteration of Immunoreactivity for SNARE Proteins in the Rat Hippocampus after Middle Cerebral Artery Occlusion

  • Park, Jung-Sun;Huh, Pil-Woo;Jung, Yeon-Joo;Park, Su-Jin;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.3
    • /
    • pp.141-146
    • /
    • 2004
  • Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins, composed of two presynaptic membrane proteins [synaptosomal-associated protein of 25 kDa (SNAP-25) and syntaxin] and a presynaptic vesicular protein [vesicle-associated membrane protein (VAMP)], serve as a core of exocytotic fusion machinery, which can be affected by ischemia. Synaptic protein in core region, striatum and cortex has been shown to alter after focal ischemia, however, little is known in hippocampus. Hippocampus is remote from ischemic core, but it is one of the most vulnerable regions. Using immunohistochemistry, the present study was undertaken to investigate the alteration of expression of SNAP-25, syntaxin, and VAMP in the hippocampus of rats which were subjected to middle cerebral artery occlusion (MCAO) for 2h and allowed to reperfuse. At 2 weeks of reperfusion, the SNAP-25 and syntaxin immunoreactivity was increased in the stratum oriens of the CA1 and the stratum lucidum of the CA3 in the ipsilateral hippocampus. However, VAMP immunoreactivity didn't show significant change. These results demonstrate that the level of the presynatpic plasma membrane proteins (SNAP-25 and syntaxin) in the rat hippocampus is more sensitively affected by focal ischemia than that of the synaptic vesicle protein (VAMP).

SNAREs in Plant Biotic and Abiotic Stress Responses

  • Kwon, Chian;Lee, Jae-Hoon;Yun, Hye Sup
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.501-508
    • /
    • 2020
  • In eukaryotes, membraneous cellular compartmentation essentially requires vesicle trafficking for communications among distinct organelles. A donor organelle-generated vesicle releases its cargo into a target compartment by fusing two distinct vesicle and target membranes. Vesicle fusion, the final step of vesicle trafficking, is driven intrinsically by complex formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNAREs are well-conserved across eukaryotes, genomic studies revealed that plants have dramatically increased the number of SNARE genes than other eukaryotes. This increase is attributed to the sessile nature of plants, likely for more sensitive and harmonized responses to environmental stresses. In this review, we therefore try to summarize and discuss the current understanding of plant SNAREs function in responses to biotic and abiotic stresses.

The Roles of the SNARE Protein Sed5 in Autophagy in Saccharomyces cerevisiae

  • Zou, Shenshen;Sun, Dan;Liang, Yongheng
    • Molecules and Cells
    • /
    • v.40 no.9
    • /
    • pp.643-654
    • /
    • 2017
  • Autophagy is a degradation pathway in eukaryotic cells in which aging proteins and organelles are sequestered into double-membrane vesicles, termed autophagosomes, which fuse with vacuoles to hydrolyze cargo. The key step in autophagy is the formation of autophagosomes, which requires different kinds of vesicles, including COPII vesicles and Atg9-containing vesicles, to transport lipid double-membranes to the phagophore assembly site (PAS). In yeast, the cis-Golgi localized t-SNARE protein Sed5 plays a role in endoplasmic reticulum (ER)-Golgi and intra-Golgi vesicular transport. We report that during autophagy, sed5-1 mutant cells could not properly transport Atg8 to the PAS, resulting in multiple Atg8 dots being dispersed into the cytoplasm. Some dots were trapped in the Golgi apparatus. Sed5 regulates the anterograde trafficking of Atg9-containing vesicles to the PAS by participating in the localization of Atg23 and Atg27 to the Golgi apparatus. Furthermore, we found that overexpression of SFT1 or SFT2 (suppressor of sed5 ts) rescued the autophagy defects in sed5-1 mutant cells. Our data suggest that Sed5 plays a novel role in autophagy, by regulating the formation of Atg9-containing vesicles in the Golgi apparatus, and the genetic interaction between Sft1/2 and Sed5 is essential for autophagy.

Protein tyrosine phosphatase PTPRT as a regulator of synaptic formation and neuronal development

  • Lee, Jae-Ran
    • BMB Reports
    • /
    • v.48 no.5
    • /
    • pp.249-255
    • /
    • 2015
  • PTPRT/RPTPρ is the most recently isolated member of the type IIB receptor-type protein tyrosine phosphatase family and its expression is restricted to the nervous system. PTPRT plays a critical role in regulation of synaptic formation and neuronal development. When PTPRT was overexpressed in hippocampal neurons, synaptic formation and dendritic arborization were induced. On the other hand, knockdown of PTPRT decreased neuronal transmission and attenuated neuronal development. PTPRT strengthened neuronal synapses by forming homophilic trans dimers with each other and heterophilic cis complexes with neuronal adhesion molecules. Fyn tyrosine kinase regulated PTPRT activity through phosphorylation of tyrosine 912 within the membrane-proximal catalytic domain of PTPRT. Phosphorylation induced homophilic cis dimerization of PTPRT and resulted in the inhibition of phosphatase activity. BCR-Rac1 GAP and Syntaxin-binding protein were found as new endogenous substrates of PTPRT in rat brain. PTPRT induced polymerization of actin cytoskeleton that determined the morphologies of dendrites and spines by inhibiting BCR-Rac1 GAP activity. Additionally, PTPRT appeared to regulate neurotransmitter release through reinforcement of interactions between Syntaxin-binding protein and Syntaxin, a SNARE protein. In conclusion, PTPRT regulates synaptic function and neuronal development through interactions with neuronal adhesion molecules and the dephosphorylation of synaptic molecules. [BMB Reports 2015; 48(5): 249-255]