Prion Protein Does Not Interfere with SNARE Complex Formation and Membrane Fusion

  • Yang, Yoo-Soo (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Shin, Jae-Il (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Shin, Jae-Yoon (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Oh, Jung-Mi (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Lee, Sang-Ho (Department of Biological Sciences, Sungkyunkwan University) ;
  • Yang, Joo-Sung (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Kweon, Dae-Hyuk (Department of Biotechnology and Bioengineering, Sungkyunkwan University)
  • Published : 2009.06.30

Abstract

In prion disease, spongiform neurodegeneration is preceded by earlier synaptic dysfunction. There is evidence that soluble N-ethylmaleimide sensitive factor attachment receptor (SNARE) complex formation is reduced in scrapie-infected in vivo models, which might explain this synaptic dysfunction because SNARE complex plays a crucial role in neuroexocytosis. In the present study, however, it is shown that prion protein (PrP) does not interfere with SNARE complex formation of 3 SNARE proteins: syntaxin 1a, SNAP-25, and synaptobrevin. Sodium dodecyl sulfate-resistant complex formation, SNAREdriven membrane fusion, and neuroexocytosis of PC12 cells were not altered by PrP. Thus, PrP does not alter synaptic function by directly interfering with SNARE complex formation.

Keywords

References

  1. Prusiner SB. Prions. P. Natl. Acad. Sci. USA 95: 13363-13383 (1998) https://doi.org/10.1073/pnas.95.23.13363
  2. Aguzzi A, Polymenidou M. Mammalian prion biology: One century of evolving concepts. Cell 116: 313-327 (2004) https://doi.org/10.1016/S0092-8674(03)01031-6
  3. Clinton J, Forsyth C, Royston MC, Roberts GW. Synaptic degeneration is the primary neuropathological feature in prion disease: A preliminary study. Neuroreport 4: 65-68 (1993) https://doi.org/10.1097/00001756-199301000-00017
  4. Ferrer I, Puig B, Blanco R, Marti E. Prion protein deposition and abnormal synaptic protein expression in the cerebellum in Creutzfeldt-Jakob disease. Neuroscience 97: 715-726 (2000) https://doi.org/10.1016/S0306-4522(00)00045-2
  5. Ferrer I, Rivera R, Blanco R, Marti E. Expression of proteins linked to exocytosis and neurotransmission in patients with Creutzfeldt-Jakob disease. Neurobiol. Dis. 6: 92-100 (1999) https://doi.org/10.1006/nbdi.1998.0226
  6. Jeffrey M, Fraser JR, Halliday WG, Fowler N, Goodsir CM, Brown DA. Early unsuspected neuron and axon terminal loss in scrapieinfected mice revealed by morphometry and immunocytochemistry. Neuropath. Appl. Neurob. 21: 41-49 (1995) https://doi.org/10.1111/j.1365-2990.1995.tb01027.x
  7. Kitamoto T, Doh-ura K, Muramoto T, Miyazono M, Tateishi J. The primary structure of the prion protein influences the distribution of abnormal prion protein in the central nervous system. Am. J. Pathol. 41: 271-277 (1992)
  8. Siso S, Puig B, Varea R, Vidal E, Acin C, Prinz M, Montrasio F, Badiola J, Aguzzi A, Pumarola M, Ferrer I. Abnormal synaptic protein expression and cell death in murine scrapie. Acta Neuropathol. 103: 615-626 (2002) https://doi.org/10.1007/s00401-001-0512-6
  9. Poirier MA, Xiao W, Macosko JC, Chan C, Shin YK, Bennett MK. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5: 765-769 (1998) https://doi.org/10.1038/1799
  10. Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395: 347-353 (1998) https://doi.org/10.1038/26412
  11. Jahn R, Scheller RH. SNAREs-engines for membrane fusion. Nat. Rev. Mol. Cell Bio. 7: 631-643 (2006) https://doi.org/10.1038/nrm2002
  12. Sandberg MK, Low P. Altered interaction and expression of proteins involved in neurosecretion in scrapie-infected GT1-1 cells. J. Biol. Chem. 280: 1264-1271 (2005) https://doi.org/10.1074/jbc.M411439200
  13. Asuni AA, Cunningham C, Vigneswaran P, Perry VH, O'Connor V. Unaltered SNARE complex formation in an in vivo model of prion disease. Brain Res. 1233: 1-7 (2008) https://doi.org/10.1016/j.brainres.2008.07.083
  14. Hayashi T, Yamasaki S, Nauenburg S, Binz T, Niemann H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 14: 2317-2325 (1995)
  15. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE. SNARE pins: Minimal machinery for membrane fusion. Cell 92: 759-772 (1998) https://doi.org/10.1016/S0092-8674(00)81404-X
  16. Chen Y, Xu Y, Zhang F, Shin YK. Constitutive versus regulated SNARE assembly: A structural basis. EMBO J. 23: 681-689 (2004) https://doi.org/10.1038/sj.emboj.7600083
  17. Xu Y, Zhang F, Su Z, McNew JA, Shin YK. Hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 12: 417-422 (2005) https://doi.org/10.1038/nsmb921
  18. Pobbati AV, Stein A, Fasshauer D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313: 673-676 (2006) https://doi.org/10.1126/science.1129486
  19. Sorensen JB, Wiederhold K, Muller EM, Milosevic I, Nagy G, de Groot BL, Grubmuller H, Fasshauer D. Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J. 25: 955-966 (2006) https://doi.org/10.1038/sj.emboj.7601003
  20. Melia TJ Jr. Putting the clamps on membrane fusion: How complexin sets the stage for calcium-mediated exocytosis. FEBS Lett. 581: 2131-2139 (2007) https://doi.org/10.1016/j.febslet.2007.02.066
  21. Jung CH, Yang YS, Kim JS, Shin JI, Jin YS, Shin JY, Lee JH, Chung KM, Hwang JS, Oh JM, Shin YK, Kweon DH. A search for synthetic peptides that inhibit soluble N-ethylmaleimide sensitivefactor attachment receptor-mediated membrane fusion. FEBS J. 275: 3051-3063 (2008) https://doi.org/10.1111/j.1742-4658.2008.06458.x
  22. Shin JI, Shin JY, Kim JS, Yang YS, Shin YK, Kweon DH. Deep membrane insertion of prion protein upon reduction of disulfide bond. Biochem. Bioph. Res. Co. 377: 995-1000 (2008) https://doi.org/10.1016/j.bbrc.2008.10.095
  23. Jung CH, Yang YS, Kim JS, Shin YK, Hwang JS, Son ED, Lee HH, Chung KM, Oh JM, Lee JH, Kweon DH. Inhibition of SNARE-driven neuroexocytosis by plant extracts. Biotechnol. Lett. (2008) https://doi.org/10.1007/s10529-008-9878-z
  24. Ma J, Lindquist S. Conversion of PrP to a self-perpetuating PrPSclike conformation in the cytosol. Science 298: 1785 (2002) https://doi.org/10.1126/science.1073619
  25. Mehlhorn I, Groth D, Stockel J, Moffat B, Reilly D, Yansura D, Willett WS, Baldwin M, Fletterick R, Cohen FE, Vandlen R, Henner D, Prusiner SB. High-level expression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry 35: 5528-5537 (1996) https://doi.org/10.1021/bi952965e
  26. Requena JR, Levine RL. Thioredoxin converts the Syrian hamster (29-231) recombinant prion protein to an insoluble form. Free Radical Bio. Med. 30: 141-147 (2001) https://doi.org/10.1016/S0891-5849(00)00430-5
  27. Castilla J, Saa P, Hetz C, Soto C. In vitro generation of infectious scrapie prions. Cell 121: 195-206 (2005) https://doi.org/10.1016/j.cell.2005.02.011
  28. Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B. Cell-free formation of protease-resistant prion protein. Nature 370: 471-474 (1994) https://doi.org/10.1038/370471a0
  29. Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB. Synthetic mammalian prions. Science 305: 673-676 (2004) https://doi.org/10.1126/science.1100195
  30. Brunger AT. Structure of proteins involved in synaptic vesicle fusion in neurons. Annu. Rev. Bioph. Biom. 30: 157-171 (2001) https://doi.org/10.1146/annurev.biophys.30.1.157
  31. Chen YA, Scheller RH. SNARE-mediated membrane fusion. Nat. Rev. Mol. Cell Bio. 2: 98-106 (2001) https://doi.org/10.1038/35052017
  32. Ishida H, Zhang X, Erickson K, Ray P. Botulinum toxin type A targets RhoB to inhibit lysophosphatidic acid-stimulated actin reorganization and acetylcholine release in nerve growth factortreated PC12 cells. J. Pharmacol. Exp. Ther. 310: 881-889 (2004) https://doi.org/10.1124/jpet.104.065318
  33. Ray P, Berman JD, Middleton W, Brendle J. Botulinum toxin inhibits arachidonic acid release associated with acetylcholine release from PC12 cells. J. Biol. Chem. 268: 11057-11064 (1993)
  34. Hay DW, Wadsworth RM. The effects of calcium channel inhibitors and other procedures affecting calcium translocation on druginduced rhythmic contractions in the rat vas deferens. Brit. J. Pharmacol. 79: 347-362 (1983) https://doi.org/10.1111/j.1476-5381.1983.tb11007.x
  35. Richardson CM, Dowdall MJ, Bowman D. Inhibition of acetylcholine release from presynaptic terminals of skate electric organ by calcium channel antagonists: a detailed pharmacological study. Neuropharmacology 35: 1537-1546 (1996) https://doi.org/10.1016/S0028-3908(96)00107-4
  36. Cunningham C, Deacon R, Wells H, Boche D, Waters S, Diniz CP, Scott H, Rawlins JN, Perry VH. Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur. J. Neurosci. 17: 2147-2155 (2003) https://doi.org/10.1046/j.1460-9568.2003.02662.x
  37. Jeffrey M, Halliday WG, Bell J, Johnston AR, MacLeod NK, Ingham C, Sayers AR, Brown DA, Fraser JR. Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropath. Appl. Neurob. 26: 41-54 (2000) https://doi.org/10.1046/j.1365-2990.2000.00216.x
  38. Russelakis-Carneiro M, Hetz C, Maundrell K, Soto C. Prion replication alters the distribution of synaptophysin and caveolin 1 in neuronal lipid rafts. Am. J. Pathol. 165: 1839-1848 (2004) https://doi.org/10.1016/S0002-9440(10)63439-6
  39. Porat Y, Abramowitz A, Gazit E. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67: 27-37 (2006) https://doi.org/10.1111/j.1747-0285.2005.00318.x
  40. Kocisko DA, Baron GS, Rubenstein R, Chen J, Kuizon S, Caughey B. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J. Virol. 77: 10288-10294 (2003) https://doi.org/10.1128/JVI.77.19.10288-10294.2003