• Title/Summary/Keyword: smoothing 효과

Search Result 138, Processing Time 0.027 seconds

Performance Enhancement of Spline-based Edge Detection (스플라인 기법을 이용한 영상의 경계 검출 성능 개선)

  • 김영호;김진철;이완주;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.11
    • /
    • pp.2106-2115
    • /
    • 1994
  • As a pre processing for an edge detection process. edge preserving smoothing algorithm is proposed. For this purpose we used the interpolation method using B-spline basis function and scaling of digital images. By approximation of continuous function from descrete data using B-spline basis function. undetermined data between two sample can be computed. so that they smooth the surfaces of objects. Some edges having mainly low frequency components are detected using down scaling of the images. Edge maps from proposed pre processed images are hardly affected by the varying space constants($\sigma$) and threshold values used in detecting zero-crossing.

  • PDF

Short-term Power Load Forecasting using Time Pattern for u-City Application (u-City응용에서의 시간 패턴을 이용한 단기 전력 부하 예측)

  • Park, Seong-Seung;Shon, Ho-Sun;Lee, Dong-Gyu;Ji, Eun-Mi;Kim, Hi-Seok;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.177-181
    • /
    • 2009
  • Developing u-Public facilities for application u-City is to combine both the state-of-the art of the construction and ubiquitous computing and must be flexibly comprised of the facilities for the basic service of the building such as air conditioning, heating, lighting and electric equipments to materialize a new format of spatial planning and the public facilities inside or outside. Accordingly, in this paper we suggested the time pattern system for predicting the most basic power system loads for the basic service. To application the tim e pattern we applied SOM algorithm and k-means method and then clustered the data each weekday and each time respectively. The performance evaluation results of suggestion system showed that the forecasting system better the ARIMA model than the exponential smoothing method. It has been assumed that the plan for power supply depending on demand and system operation could be performed efficiently by means of using such power load forecasting.

  • PDF

Noise filtering for Depth Images using Shape Smoothing and Z-buffer Rendering (형상 스무딩과 Z-buffer 렌더링을 이용한 깊이 영상의 노이즈 필터링)

  • Kim, Seung-Man;Park, Jeung-Chul;Cho, Ji-Ho;Lee, Kwan-H.
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1188-1193
    • /
    • 2006
  • 본 논문에서는 동적 객체의 3 차원 정보를 표현하는 깊이 영상의 노이즈 필터링 방법을 제안한다. 실제 객체의 동적인 3 차원 정보는 적외선 깊이 센서가 장착된 깊이 비디오 카메라를 이용하여 실시간으로 획득되며, 일련의 깊이 영상, 즉 깊이 비디오(depth video)로 표현될 수 있다. 하지만 측정환경의 조명조건, 객체의 반사속성, 카메라의 시스템 오차 등으로 인해 깊이 영상에는 고주파 성분의 노이즈가 발생하게 된다. 이를 효과적으로 제거하기 위해 깊이 영상기반의 모델링 기법(depth image-based modeling)을 이용한 3 차원 메쉬 모델링을 수행한다. 생성된 3 차원 메쉬 모델은 깊이 영상의 노이즈로 인해 경계 영역과 형상 내부 영역에 심각한 형상 오차를 가진다. 경계 영역의 오차를 제거하기 위해 깊이 영상으로부터 경계 영역을 추출하고, 가까운 순서로 정렬한 후 angular deviation 을 이용하여 불필요하게 중복된 점들을 제거한다. 그리고 나서 2 차원 가우시안 스무딩 기법을 적용하여 부드러운 경계영역을 생성한다. 형상 내부에 대해서는 경계영역에 제약조건을 주고 3 차원 가우시안 스무딩 기법을 적용하여 전체적으로 부드러운 형상을 생성한다. 최종적으로 스무딩된 3 차원 메쉬모델을 렌더링할 때, 깊이 버퍼에 있는 정규화된 깊이 값들을 추출하여 원래 깊이 영상과 동일한 깊이 영역을 가지도록 저장함으로서 전역적으로 연속적이면서 부드러운 깊이 영상을 생성할 수 있다. 제안된 방법에 의해 노이즈가 제거된 깊이 영상을 이용하여 고품질의 영상기반 렌더링이나 깊이 비디오 기반의 햅틱 렌더링에 적용할 수 있다.

  • PDF

Performance Improvement of Radial Basis Function Neural Networks Using Adaptive Feature Extraction (적응적 특징추출을 이용한 Radial Basis Function 신경망의 성능개선)

  • 조용현
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.3
    • /
    • pp.253-262
    • /
    • 2000
  • This paper proposes a new RBF neural network that determines the number and the center of hidden neurons based on the adaptive feature extraction for the input data. The principal component analysis is applied for extracting adaptively the features by reducing the dimension of the given input data. It can simultaneously achieve a superior property of both the principal component analysis by mapping input data into set of statistically independent features and the RBF neural networks. The proposed neural networks has been applied to classify the 200 breast cancer databases by 2-class. The simulation results shows that the proposed neural networks has better performances of the learning time and the classification for test data, in comparison with those using the k-means clustering algorithm. And it is affected less than the k-means clustering algorithm by the initial weight setting and the scope of the smoothing factor.

  • PDF

OpenVolMesh: Generic and Efficient Data Structure for 3D Volumetric Meshes (OpenVolMesh: 삼차원 볼륨 기반의 메쉬 표현을 위한 범용적이고 효과적인 자료 구조)

  • Kim, Jun-Ho;Seo, Jin-Seok;Oh, Sei-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.85-92
    • /
    • 2008
  • Meshes are the most appropriate data structures for representing 3D geometries. Surface meshes have been frequently used for representing 3D geometries, which only samples data on the surfaces of the given 3D geometries. Thanks to the improvements of computing powers, it is required to develop more complicated contents which utilize the volumetric information of 3D geometries. In this paper, we introduce a novel volumetric mesh libraries based on the half-face data structure, called OpenVolMesh, and describe its designs and implementations. The OpenVolMesh extends the OpenMesh, which is one of the most famous mesh libraries, by supporting volumetric meshes. The OpenVolMesh provides the generic programming, dynamic allocations of primitive properties, efficient array-based data structures, and source-level compatibility with OpenMesh. We show the usefulness of the OpenVolMesh in the developments of 3D volumetric contents with prototypic implementations such as volumetric mesh smoothing and CW-cell decompositions.

Time Series Representation Combining PIPs Detection and Persist Discretization Techniques for Time Series Classification (시계열 분류를 위한 PIPs 탐지와 Persist 이산화 기법들을 결합한 시계열 표현)

  • Park, Sang-Ho;Lee, Ju-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.97-106
    • /
    • 2010
  • Various time series representation methods have been suggested in order to process time series data efficiently and effectively. SAX is the representative time series representation method combining segmentation and discretization techniques, which has been successfully applied to the time series classification task. But SAX requires a large number of segments in order to represent the meaningful dynamic patterns of time series accurately, since it loss the dynamic property of time series in the course of smoothing the movement of time series. Therefore, this paper suggests a new time series representation method that combines PIPs detection and Persist discretization techniques. The suggested method represents the dynamic movement of high-diemensional time series in a lower dimensional space by detecting PIPs indicating the important inflection points of time series. And it determines the optimal discretizaton ranges by applying self-transition and marginal probabilities distributions to KL divergence measure. It minimizes the information loss in process of the dimensionality reduction. The suggested method enhances the performance of time series classification task by minimizing the information loss in the course of dimensionality reduction.

Parallax Map Preprocessing Algorithm for Performance Improvement of Hole-Filling (홀 채우기의 성능 개선을 위한 시차지도의 전처리 알고리즘)

  • Kim, Jun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.62-70
    • /
    • 2013
  • DIBR(Depth Image Based Rendering) is a kind of view synthesis algorithm to generate images at free view points from the reference color image and its depth map. One of the main challenges of DIBR is the occurrence of holes that correspond to uncovered backgrounds at the synthesized view. In order to cover holes efficiently, two main approaches have been actively investigated. One is to develop preprocessing algorithms for depth maps or parallax maps to reduce the size of possible holes, and the other is to develop hole filling methods to fill the generated holes using adjacent pixels in non-hole areas. Most conventional preprocessing algorithms for reducing the size of holes are based on the smoothing process of depth map. Filtering of depth map, however, attenuates the resolution of depth map and generates geometric distortions. In this paper, we proposes a novel preprocessing algorithm for parallax map to improve the performance of hole-filling by avoiding the drawbacks of conventional methods.

Block Classification of Document Images by Block Attributes and Texture Features (블록의 속성과 질감특징을 이용한 문서영상의 블록분류)

  • Jang, Young-Nae;Kim, Joong-Soo;Lee, Cheol-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.856-868
    • /
    • 2007
  • We propose an effective method for block classification in a document image. The gray level document image is converted to the binary image for a block segmentation. This binary image would be smoothed to find the locations and sizes of each block. And especially during this smoothing, the inner block heights of each block are obtained. The gray level image is divided to several blocks by these location informations. The SGLDM(spatial gray level dependence matrices) are made using the each gray-level document block and the seven second-order statistical texture features are extracted from the (0,1) direction's SGLDM which include the document attributes. Document image blocks are classified to two groups, text and non-text group, by the inner block height of the block at the nearest neighbor rule. The seven texture features(that were extracted from the SGLDM) are used for the five detail categories of small font, large font, table, graphic and photo blocks. These document blocks are available not only for structure analysis of document recognition but also the various applied area.

  • PDF

The Relationship between Technology Innovation and Firm Performance of Korean Companies based on Patent Analysis (특허분석을 통한 기술혁신과 기업성과의 관계분석)

  • Park Sun-Young;Park Hyun-Woo;Cho Man-Hyung
    • Journal of Korea Technology Innovation Society
    • /
    • v.9 no.1
    • /
    • pp.1-25
    • /
    • 2006
  • Technological innovation is being recognized as a core capability of competitive advantage for sustainable growth of a company. In this regard, lots of research activities have been conducted on technological innovation and performance at firm level. Ihis study empirically investigates those relationship with cross-sectional and time-series data according to firm-specific characteristics along industry. Patent intensity, R&D intensity, and intangible asset intensity smoothing by firm size are used as proxy measures for explanation of performance with net income per employee. As a result with 162 high-tech firms for 11 years, it was found that high performances were positively related to patent and R&D intensity. Also, firms classified into 8 categories based on firm-specific technological innovation characteristics show difference upon performances. To sum up, firms that have high patent and R&D intensity demonstrate high performance compared to other firms.

  • PDF

Estimation on the Future Traffic Volumes and Analysis on Information Value of Tidal Current Signal in Incheon (인천항의 장래 교통량 추정 및 조류신호의 정보가치 분석)

  • Kim, Jung-Hoon;Kim, Se-Won;Gug, Seung-Gi
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.455-462
    • /
    • 2007
  • This paper estimated the future traffic volume incoming and outgoing in Incheon port, and analyzed the value of information serviced by tidal current signal operation center in Incheon. The cargo traffic in 2020 will increase twice as much as in 2005 according to the national ports basis plan. The maritime traffic will increase greatly consequently. Also, MOMAF has operated tidal current signal operation center to prevent marine accidents caused by current influence on vessels navigating through Incheon. However the quantitative effect is not known because there is no analysis about its value. Therefore the value of information serviced by tidal current signal operation center in Incheon was calculated with contingent valuation method(CVM), and the information value was analyzed considering future traffic in this study. Thus, the annual information value was calculated at about $170{\sim}280$ million won, considered traffic volume using the information of tidal current directly in 2020 since 2006.