• 제목/요약/키워드: smooth

Search Result 6,577, Processing Time 0.034 seconds

AN INEQUALITY OF SUBHARMONIC FUNCTIONS

  • Choi, Chang-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.543-551
    • /
    • 1997
  • We prove a norm inequality of the form $\left\$\mid$ \upsilon \right\$\mid$ \leq (r - 1) \left\$\mid$ u \right\$\mid$_p, 1 < p < \infty$, between a non-negative subharmonic function u and a smooth function $\upsilon$ satisfying $$\mid$\upsilon(0)$\mid$ \leq u(0), $\mid$\nabla\upsilon$\mid$ \leq \nabla u$\mid$$ and $\mid$\Delta\upsilon$\mid$ \leq \alpha\Delta u$, where $\alpha$ is a constant with $0 \leq \alpha \leq 1$. This inequality extends Burkholder's inequality where $\alpha = 1$.

  • PDF

FANO MANIFOLDS AND BLOW-UPS OF LOW-DIMENSIONAL SUBVARIETIES

  • Chierici, Elena;Occhetta, Gianluca
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.189-213
    • /
    • 2010
  • We study Fano manifolds of pseudoindex greater than one and dimension greater than five, which are blow-ups of smooth varieties along smooth centers of dimension equal to the pseudoindex of the manifold. We obtain a classification of the possible cones of curves of these manifolds, and we prove that there is only one such manifold without a fiber type elementary contraction.

INTEGRAL CHOW MOTIVES OF THREEFOLDS WITH K-MOTIVES OF UNIT TYPE

  • Gorchinskiy, Sergey
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1827-1849
    • /
    • 2017
  • We prove that if a smooth projective algebraic variety of dimension less or equal to three has a unit type integral K-motive, then its integral Chow motive is of Lefschetz type. As a consequence, the integral Chow motive is of Lefschetz type for a smooth projective variety of dimension less or equal to three that admits a full exceptional collection.

EQUIVARIANT VECTOR BUNDLES OVER $S^1$

  • Kim, Sung-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.415-418
    • /
    • 1994
  • Let G be a compact Lie group and let $S^1$ denote the unit circle in $R^2$ with the standard metric. Since every smooth compact Lie group action on $S^1$ is smoothly equivalent to a linear action (cf. [3J TH 2.0), we may think of $S^1$ with a smooth G-action as S(V) the unit circle of a real 2-dimensional orthogonal G-module V.(omitted)

  • PDF

MAYER-VIETORIS SEQUENCE IN COHOMOLOGY OF LIE ALGEBROIDS ON SIMPLICIAL COMPLEXES

  • Oliveira, Jose R.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1357-1366
    • /
    • 2018
  • It is shown that the Mayer-Vietoris sequence holds for the cohomology of complexes of Lie algebroids which are defined on simplicial complexes and satisfy the compatibility condition concerning restrictions to the faces of each simplex. The Mayer-Vietoris sequence will be obtained as a consequence of the extension lemma for piecewise smooth forms defined on complexes of Lie algebroids.

CRITERION FOR BLOW-UP IN THE EULER EQUATIONS VIA CERTAIN PHYSICAL QUANTITIES

  • Kim, Namkwon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.243-248
    • /
    • 2012
  • We consider the (possible) finite time blow-up of the smooth solutions of the 3D incompressible Euler equations in a smooth domain or in $R^3$. We derive blow-up criteria in terms of $L^{\infty}$ of the partial component of Hessian of the pressure together with partial component of the vorticity.