• Title/Summary/Keyword: smart control and analysis

Search Result 711, Processing Time 0.026 seconds

PDC Intelligent control-based theory for structure system dynamics

  • Chen, Tim;Lohnash, Megan;Owens, Emmanuel;Chen, C.Y.J.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2020
  • This paper deals with the problem of global stabilization for a class of nonlinear control systems. An effective approach is proposed for controlling the system interaction of structures through a combination of parallel distributed compensation (PDC) intelligent controllers and fuzzy observers. An efficient approximate inference algorithm using expectation propagation and a Bayesian additive model is developed which allows us to predict the total number of control systems, thereby contributing to a more adaptive trajectory for the closed-loop system and that of its corresponding model. The closed-loop fuzzy system can be made as close as desired, so that the behavior of the closed-loop system can be rigorously predicted by establishing that of the closed-loop fuzzy system.

Analysis of Average Neutral Point Current in 3-level NPC Converter under Generalized Unbalanced AC Input Condition

  • Jung, Kyungsub;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.151-152
    • /
    • 2016
  • This paper presents a neutral point deviation compensating control algorithm applied to a 3-level NPC converter under generalized unbalanced ac input conditions. The neutral point deviation is analyzed with a focus on the current flowing out of or into the neutral point of the dc-link in 3-level NPC converter. The model of neutral point deviation and neutral current are also constructed. The positive and negative sequence components of the pole voltages and ac input currents are employed to accurately explain the behavior of 3-level NPC converter and its impact on neutral point deviation. This paper includes the harmonic characteristic of neutral point current under various imbalance AC operating conditions.

  • PDF

Design of Smart OTT Platform based on the Analysis of Adaptive Buffering (적응 버퍼링 성능분석 기반의 스마트 OTT 플랫폼 설계☆)

  • Kim, Inki;Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.19-26
    • /
    • 2016
  • In this paper, the dynamic buffering based smart OTT platform was proposed, and analyzed for adaptive bit-rate video delivery with the optimization of HLS (HTTP Live Streaming). This platform consists of the software platform between sever and client which detects the bandwidth capacity, and adjusts the quality of the streaming for multiple bit-rates resolutions. In order to apply adaptive buffering, two buffers are added to the basic HLS player, and each buffer is responsible for constantly buffering a previous and the next channels relative to the current channel. This adaptive transmitting with smart OTT platform is superior to delivering a static video file at a single buffering, because the video stream of adaptive double buffers can be switched streaming according to client's available network speed. As a result, this proposed smart OTT can be cooperated to the application of HLS server with segmented H.265 MPEG-2 TS video & m3u8 files with its information based on the optimized transmission channel state of live and VOD, and applied to PLC transmission, too.

Channel Transition Analysis of Smart HLS with Dynamic Single Buffering Scheme (동적 단일 버퍼링 기법을 적용한 스마트 HLS의 채널변경 분석)

  • Kim, Chong-il;Kang, Min-goo;Kim, Dong-hyun;Kim, In-ki;Han, Kyung-sik
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.9-15
    • /
    • 2016
  • In this paper, we propose a smart HLS(HTTP Live Stream) platform with dynamic single buffering for the best transmission of adaptive video bit-rates. This smart HLS can optimizes the channel transition zapping-time with the monitoring of bandwidth between HLS server and OTT(Over The Top) client. This platform is designed through the control of video stream due to proper multi-bitrates and bandwidths. This proposed OTT can decode the live and VOD(Video On Demand) videos with the buffering of optimumal bitrate. And, the HLS can be cooperated with a smart OTT, and segmented for the m3u8 files of H.265 MPEG-2 TS(Transport Stream) videos. As a resullt, this single buffer based smart OTT can transmit optimal videos with the maximum data buffering according to the adaptive bit-rate depending on the network bandwidth efficiency and the decoded VOD video, too.

A Study on the Information Security Control and Management Process in Mobile Banking Systems

  • Kim, So Young;Kim, Myong Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.218-232
    • /
    • 2015
  • According to the development of information processing technology and mobile communication technology, the utilization of mobile banking systems is drastically increasing in banking system. In the foreseeable future, it is expected to increase rapidly the demands of mobile banking in bank systems with the prevalence of smart devices and technologies. However, the keeping 'security' is very important in banking systems that handles personal information and financial assets. But it is very difficult to improve the security of banking systems only with the vulnerabilities and faults analysis methods of information security. Hence, in this paper, we accomplish the analysis of security risk factor and security vulnerability that occur in mobile banking system. With analyzed results, we propose the information security control and management processes for assessing and improving security based on the mechanisms which composes mobile banking system.

An Index-Based Context-Aware Energy Management System in Ubiquitous Smart Space (유비쿼터스 지능 공간에서의 지수 기반 상황인지 에너지경영 시스템)

  • Kwon, Ohyung;Lee, Yonnim
    • Knowledge Management Research
    • /
    • v.9 no.4
    • /
    • pp.51-63
    • /
    • 2008
  • Effective energy consumption now becomes one of the area of knowledge management which potentially gives global impact. It is considerable for the energy management to optimize the usage of energy, rather than decreasing energy consumption at any cases. To resolve these challenges, an intelligent and personalized system which helps the individuals control their own behaviors in an optimal and timely manner is needed. So far, however, since the legacy energy management systems are nation-wide or organizational, individual-level energy management is nearly impossible. Moreover, most estimating methods of energy consumption are based on forecasting techniques which tend to risky or analysis models which may not be provided in a timely manner. Hence, the purpose of this paper is to propose a novel individual-level energy management system which aims to realize timely and personalized energy management based on context-aware computing approach. To do so, an index model for energy consumption is proposed with a corresponding service framework.

  • PDF

Attribute based User Authentication for Contents Distribution Environments

  • Yoo, Hye-Joung
    • International Journal of Contents
    • /
    • v.8 no.3
    • /
    • pp.79-82
    • /
    • 2012
  • In digital contents distribution environments, a user authentication is an important security primitive to allow only authenticated user to use right services by checking the validity of membership. For example, in Internet Protocol Television (IPTV) environments, it is required to provide an access control according to the policy of content provider. Remote user authentication and key agreement scheme is used to validate the contents accessibility of a user. We propose a novel user authentication scheme using smart cards providing a secure access to multimedia contents service. Each user is authenticated using a subset of attributes which are issued in the registration phase without revealing individual's identity. Our scheme provides the anonymous authentication and the various permissions according to the combination of attributes which are assigned to each user. In spite of more functionality, the result of performance analysis shows that the computation and communication cost is very low. Using this scheme, the security of contents distribution environments in the client-server model can be significantly improved.

Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.641-651
    • /
    • 2019
  • The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second moment is derived based on the $It{\hat{o}}$ stochastic differential rule. The stochastically and deterministically parameter-excited vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance amplitude.

A study on optimal environmental factors of tomato using smart farm data (스마트팜 데이터를 이용한 토마토 최적인자에 관한 연구)

  • Na, Myung Hwan;Park, Yuha;Cho, Wan Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1427-1435
    • /
    • 2017
  • The smart farm is a remarkable system because it utilizes information and communication technologies in agriculture to bring high productivity and excellent qualities of crops. It automatically measures the growth environment of the crops and accumulates huge amounts of environmental information in real time growing in smart farms using multi-variable control of environmental factors. The statistical model using the collected big data will be helpful for decision making in order to control optimal growth environment of crops in smart farms. Using data collected from a smart farm of tomato, we carried out multiple regression analysis to determine the relationship between yield and environmental factors and to predict yield of tomato. In this study, appropriate parameter modification was made for environmental factors considering tomato growth. Using these new factors, we fit the model and derived the optimal environmental factors that affect the yields of tomato. Based on this, we could predict the yields of tomato. It is expected that growth environment can be controlled to improve tomato productivities by using statistical model.

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.