DOI QR코드

DOI QR Code

Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations

  • Ying, Z.G. (Department of Mechanics, School of Aeronautics and Astronautics, Zhejiang University) ;
  • Ni, Y.Q. (Department of Civil and Environmental Engineering, National Rail Transit Electrification and Automation Engineering Technology Research Center (Hong Kong Branch), The Hong Kong Polytechnic University) ;
  • Duan, Y.F. (Department of Civil Engineering, College of Civil Engineering and Architecture, Zhejiang University)
  • Received : 2018.09.25
  • Accepted : 2019.01.17
  • Published : 2019.06.25

Abstract

The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second moment is derived based on the $It{\hat{o}}$ stochastic differential rule. The stochastically and deterministically parameter-excited vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance amplitude.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Zhejiang Provincial Natural Science Foundation of China, Hong Kong Branch of the National Rail Transit Electrification and Automation Engineering Technology Research Centre

References

  1. Ariaratnam, S.T., Tam, D.S.F. and Xie, W.C. (1991), "Lyapunov exponents and stochastic stability of coupled linear systems under white noise excitation", Probabilist. Eng. Mech., 6(2), 51-56. https://doi.org/10.1016/0266-8920(91)90017-X.
  2. Baicu, C.F., Rahn, C.D. and Nibali, B.D. (1996), "Active boundary control of elastic cables: theory and experiment", J. Sound Vib., 198(1), 17-26. https://doi.org/10.1006/jsvi.1996.0554.
  3. Bobryk, R.V., Chrzeszczyk, A. and Stettner, L. (2005), "A closure procedure for random vibration parametric resonances", J. Vib. Control, 11, 215-223. https://doi.org/10.1177/1077546305049052.
  4. Bolotin, V.V. (1984), Random Vibration of Elastic Systems, Kluwer, Dordrecht.
  5. Bossens, F. and Preumont, A. (2001), "Active tendon control of cable-stayed bridges: a large-scale demonstration", Earthq. Eng. Struct. D., 30(7), 961-979. https://doi.org/10.1002/eqe.40.
  6. Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures - theory and applications: a review of recent advances", J. Intel. Mat. Syst. Str., 23, 1181-1195. https://doi.org/10.1177/1045389X12445029.
  7. Costa, A.P.D., Martins, J.A.C., Branco, F. and Lilien, J.L. (1996), "Oscillations of bridge stay cables induced by periodic motions of deck and/or towers", J. Eng. Mech.- ASCE, 122(7), 613-621. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(613).
  8. Dimentberg, M.F. (1988), Statistical Dynamics of Nonlinear and Time-Varying Systems, Research Studies Press, Taunton.
  9. Diouron, T.L., Fujino, Y. and Abe, M. (2003), "Control of windinduced self-excited oscillations by transfer of internal energy to higher modes of vibration, part I: analysis in two degrees of freedom; II: application to taut cables", J. Eng. Mech. - ASCE, 129(5), 514-538. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:5(526).
  10. Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2005), "State-derivative feedback control of cable vibration using semi-active MR dampers", Comput.-Aided Civil Infrastruct. Eng., 20(6), 431-449. https://doi.org/10.1111/j.1467-8667.2005.00396.x.
  11. Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2006), "Cable vibration control using Magneto-rheological (MR) dampers", J. Intel. Mat. Syst. Str., 17, 321-325. https://doi.org/10.1142/9789812702197_0121.
  12. Duan, Y.F., Spencer, B.F., Ni, Y.Q., Zhang, H.M. and Ko, J.M. (2019), "Design formulas for vibration control of taut cables using passive MR dampers", Smart Struct. Syst., in press.
  13. Duan, Y.F., Tao, J.J., Zhang, H.M., Wang, S.M. and Yun, C.B. (2018), "Real-time hybrid simulation based on vector form intrinsic finite element and field programmable gate array", Struct. Control Health Monit., e2277, https://doi.org/10.1002/stc.2277.
  14. Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
  15. Friedmann, P.P. (1990), "Numerical methods for the treatment of periodic systems with applications to structural dynamics and helicopter rotor dynamics", Comput. Struct., 35(4), 329-347. https://doi.org/10.1016/0045-7949(90)90059-B.
  16. Fujino, Y., Warnitchai, P. and Pacheco, B.M. (1993), "Active stiffness control of cable vibration", J. Appl. Mech. - ASME, 60(4), 948-953. https://doi.org/10.1115/1.2901006
  17. Gattulli, V., Morandini, M. and Paolone, A. (2002), "A parametric analytical model for non-linear dynamics in cable-stayed beam", Earthq. Eng. Struct. D., 31(6), 1281-1300. https://doi.org/10.1002/eqe.162.
  18. Gehle, R.W. and Masri, S.F. (1998), "Active control of shallow, slack cable using the parametric control of end tension", Nonlinear Dynam., 17(1), 77-94. https://doi.org/10.1023/A:1008212828873
  19. Giaccu, G.F., Barbiellini, B. and Caracoglia, L. (2015), "Parametric study on the nonlinear dynamics of a three-stay cable network under stochastic free vibration", J. Eng. Mech, - ASCE, 141(6), 04014166. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000887.
  20. Gonzalez, A., Neild, S.A., Wagg, D.J. and Macdonald, J.H.G. (2008), "Modal stability of inclined cables subjected to vertical support excitation", J. Sound Vib., 318(3), 565-579. https://doi.org/10.1016/j.jsv.2008.04.031.
  21. Hsu, C.S. and Cheng, W.H. (1974), "Steady-state response of a dynamical system under combined parametric and forced excitations", J. Appl. Mech. - ASME, 41(2), 371-378. https://doi.org/10.1115/1.3423296
  22. Ibrahim, R.A. (1985), Parametric Random Vibration, Wiley, New York.
  23. Irvine, H.M., (1981), Cable Structures, MIT Press, Cambridge.
  24. Iyengar, R.N. and Rao, G. (1988), "Free vibrations and parametric instability of a laterally loaded cable", J. Sound Vib., 127(2), 231-243. https://doi.org/10.1016/0022-460X(88)90299-4.
  25. Johson, E.A., Christenson, R.E. and Spencer, B.F. (2003), "Semiactive damping of cables with sag", Comput.-Aided Civil Infrastruct. Eng., 18(2), 132-146. https://doi.org/10.1111/1467-8667.00305.
  26. Kozin, F. and Zhang, Z.Y. (1991), "On almost sure sample stability of nonlinear Ito differential equations", Probabilist. Eng. Mech., 6(2), 92-95. https://doi.org/10.1016/0266-8920(91)90022-V.
  27. Krenk, S. (2000), "Vibrations of a taut cable with an external damper", J. Appl. Mech. - ASME, 67(4), 772-776. doi:10.1115/1.1322037
  28. Lee, T.C. (1976), "A study of coupled Mathieu equations by use of infinite determinants", J. Appl. Mech. - ASME, 43(2), 349-352. doi:10.1115/1.3423838.
  29. Lin, Y.K. and Cai, G.Q. (1994), "Stochastic stability of non-linear systems", Int. J. Nonlinear Mech., 29, 539-553. https://doi.org/10.1016/0020-7462(94)90022-1
  30. Luongo, A. and Zulli, D. (2012), "Dynamic instability of inclined cables under combined wind flow and support motion", Nonlinear Dynam., 67(1), 71-87. https://doi.org/10.1007/s11071-011-9958-9
  31. Main, J.A. and Jones, N.P. (2001), "Evaluation of viscous dampers for stay-cable vibration mitigation", J. Bridge Eng. - ASCE, 6(6), 385-397. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(385).
  32. Manohar, C.S. and Ibrahim, R.A. (1999), "Progress in structural dynamics with stochastic parameter variations: 1987-1998", ASME Appl. Mech. Rev., 52(5), 177-197. doi:10.1115/1.3098933.
  33. Nagarajaiah, S. and Jung, H.J. (2014), "Smart tuned mass dampers: recent developments", Smart Struct. Syst., 13(2), 173-176. http://dx.doi.org/10.12989/sss.2014.13.2.173.
  34. Namachchivaya, N.S. (1991), "Almost sure stability of dynamical systems under combined harmonic and stochastic excitations", J. Sound Vib., 151, 77-90. https://doi.org/10.1016/0022-460X(91)90653-2
  35. Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear Oscillations, John Wiley & Sons, New York.
  36. Or, S.W., Duan, Y.F., Ni, Y.Q., Chen, Z.H. and Lam, K.H. (2008), "Development of Magnetorheological dampers with embedded piezoelectric force sensors for structural vibration control", J. Intel. Mat. Syst. Str., 19, 1327-1338. https://doi.org/10.1177/1045389X07085673.
  37. Ouni, M.H.E., Kahla, N.B. and Preumont, A. (2012), "Numerical and experimental dynamic analysis and control of a cable stayed bridge under parametric excitation", Eng. Struct., 45, 244-256. https://doi.org/10.1016/j.engstruct.2012.06.018.
  38. Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng. - ASCE, 119(6), 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961).
  39. Perkins, N.C. (1992), "Modal interactions in the non-linear response of elastic cables under parametric/external excitation", Int. J. Nonlinear Mech., 27(2), 233-250. https://doi.org/10.1016/0020-7462(92)90083-J.
  40. Rega, G., Vestroni, F. and Benedettini, F. (1984), "Parametric analysis of large amplitude free vibrations of a suspended cable", Int. J. Solids Struct., 20(2), 95-105. https://doi.org/10.1016/0020-7683(84)90001-5.
  41. Roberts, J.B. and Spanos, P.D. (1986), "Stochastic averaging: an approximate method of solving random vibration problem", Int. J. Nonlinear Mech., 21(2), 111-134. https://doi.org/10.1016/0020-7462(86)90025-9.
  42. Sinha, S.C. and Wu, D.H. (1991), "An efficient computational scheme for the analysis of periodic systems", J. Sound Vib., 151(1), 91-117. https://doi.org/10.1016/0022-460X(91)90654-3.
  43. Soong, T.T. and Spencer, B.F. Jr. (2002), "Supplemental energy dissipation: state-of-the-art and state-of-the-practice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X.
  44. Spencer, B.F. Jr. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng.- ASCE, 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845).
  45. Stupnicka, S. (1978), "The generalized harmonic balance method for determining the combination resonance in the parametric dynamic system", J. Sound Vib., 58(3), 347-361. https://doi.org/10.1016/S0022-460X(78)80043-1.
  46. Susumpow, T. and Fujino, Y. (1995), "Active control of multimodal cable vibrations by axial support motion", J. Eng. Mech.- ASCE, 121(9), 964-972. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:9(964).
  47. Symans, M.D. and Constantinou, M.C. (1999), "Semi-active control system for seismic protection of structures: a state-ofthe-art review", Eng. Struct., 21(6), 469-487. https://doi.org/10.1016/S0141-0296(97)00225-3.
  48. Takahashi, K. (1981), "An approach to investigate the instability of the multiple-degree-of-freedom parametric dynamic systems", J. Sound Vib., 78(4), 519-529. https://doi.org/10.1016/S0022-460X(81)80122-8.
  49. Takahashi, K. (1991), "Dynamic stability of cable subjected to an axial periodic load", J. Sound Vib., 144(2), 323-330. https://doi.org/10.1016/0022-460X(91)90752-6.
  50. Wang, H., Li, L.Y., Song, G.B., Dabney, J.B. and Harman, T.L. (2015), "A new approach to deal with sensor errors in structural controls with MR damper", Smart Struct. Syst., 16(2), 329-345. http://dx.doi.org/10.12989/sss.2015.16.2.329.
  51. Wang, X.Y., Ni, Y.Q., Ko, J.M. and Chen, Z.Q. (2005), "Optimal design of viscous dampers for multi-mode vibration control of bridge cables", Eng. Struct., 27(5), 792-800. https://doi.org/10.1016/j.engstruct.2004.12.013.
  52. Warminski, J., Zulli, D., Rega, G. and Latalski, J. (2016), "Revisited modeling and multimodal nonlinear oscillations of a sagged cable under support motion", Meccanica, 51(11), 2541-2575. https://doi.org/10.1007/s11012-016-0450-y
  53. Xia, Y. and Fujino, Y. (2006), "Auto-parametric vibration of a cable-stayed-beam structure under random excitation", J. Eng. Mech.- ASCE, 132(3), 279-286. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:3(279).
  54. Xie, W.C. (2006), "Moment Lyapunov exponents of a twodimensional system under both harmonic and white noise parametric excitations", J. Sound Vib., 289(1-2), 171-191. https://doi.org/10.1016/j.jsv.2005.02.001.
  55. Xu, Y.L., Yu, Z. and Ko, J.M. (1998), "Forced vibration studies of sagged cables with oil damper using a hybrid method", Eng. Struct., 20(8), 692-705. https://doi.org/10.1016/S0141-0296(97)00100-4.
  56. Ying, Z.G. and Ni, Y.Q. (2017), "Eigenvalue analysis approach to random periodic parameter-excited stability: application to a stay cable", J. Eng. Mech. ASCE, 143(5), 06017002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001213.
  57. Ying, Z.G., Ni, Y.Q. and Chen, Z.H. (2009), "A symplectic algorithm for the stability analysis of nonlinear parametric excited systems", Int. J. Struct. Stab. Dyn., 9(3), 561-584. https://doi.org/10.1142/S0219455409003156.
  58. Ying, Z.G., Ni, Y.Q. and Ko, J.M. (2006), "Parametrically excited instability analysis of a cable under two support motions", Int. J. Struct. Stab. Dyn., 6(1), 43-58. https://doi.org/10.1142/S0219455406001794.
  59. Ying, Z.G., Ni, Y.Q. and Ko, J.M. (2007), "Parametrically excited instability analysis of a semi-actively controlled cable", Eng. Struct., 29(4), 567-575. https://doi.org/10.1016/j.engstruct.2006.05.020.
  60. Zhou, Q., Nielsen, S.R.K. and Qu, W. (2010), "Stochastic response of an inclined shallow cable with linear viscous dampers under stochastic excitation", J. Eng. Mech. - ASCE, 136(11), 1411-1421. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000188.

Cited by

  1. System simulation and synchronization for optimal evolutionary design of nonlinear controlled systems vol.26, pp.6, 2019, https://doi.org/10.12989/sss.2020.26.6.797
  2. Modal Interaction-Induced Parametric Resonance of Stayed Cable: A Combined Theoretical and Experimental Investigation vol.2021, 2019, https://doi.org/10.1155/2021/5797761