Acknowledgement
Supported by : National Natural Science Foundation of China, Zhejiang Provincial Natural Science Foundation of China, Hong Kong Branch of the National Rail Transit Electrification and Automation Engineering Technology Research Centre
References
- Ariaratnam, S.T., Tam, D.S.F. and Xie, W.C. (1991), "Lyapunov exponents and stochastic stability of coupled linear systems under white noise excitation", Probabilist. Eng. Mech., 6(2), 51-56. https://doi.org/10.1016/0266-8920(91)90017-X.
- Baicu, C.F., Rahn, C.D. and Nibali, B.D. (1996), "Active boundary control of elastic cables: theory and experiment", J. Sound Vib., 198(1), 17-26. https://doi.org/10.1006/jsvi.1996.0554.
- Bobryk, R.V., Chrzeszczyk, A. and Stettner, L. (2005), "A closure procedure for random vibration parametric resonances", J. Vib. Control, 11, 215-223. https://doi.org/10.1177/1077546305049052.
- Bolotin, V.V. (1984), Random Vibration of Elastic Systems, Kluwer, Dordrecht.
- Bossens, F. and Preumont, A. (2001), "Active tendon control of cable-stayed bridges: a large-scale demonstration", Earthq. Eng. Struct. D., 30(7), 961-979. https://doi.org/10.1002/eqe.40.
- Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures - theory and applications: a review of recent advances", J. Intel. Mat. Syst. Str., 23, 1181-1195. https://doi.org/10.1177/1045389X12445029.
- Costa, A.P.D., Martins, J.A.C., Branco, F. and Lilien, J.L. (1996), "Oscillations of bridge stay cables induced by periodic motions of deck and/or towers", J. Eng. Mech.- ASCE, 122(7), 613-621. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(613).
- Dimentberg, M.F. (1988), Statistical Dynamics of Nonlinear and Time-Varying Systems, Research Studies Press, Taunton.
- Diouron, T.L., Fujino, Y. and Abe, M. (2003), "Control of windinduced self-excited oscillations by transfer of internal energy to higher modes of vibration, part I: analysis in two degrees of freedom; II: application to taut cables", J. Eng. Mech. - ASCE, 129(5), 514-538. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:5(526).
- Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2005), "State-derivative feedback control of cable vibration using semi-active MR dampers", Comput.-Aided Civil Infrastruct. Eng., 20(6), 431-449. https://doi.org/10.1111/j.1467-8667.2005.00396.x.
- Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2006), "Cable vibration control using Magneto-rheological (MR) dampers", J. Intel. Mat. Syst. Str., 17, 321-325. https://doi.org/10.1142/9789812702197_0121.
- Duan, Y.F., Spencer, B.F., Ni, Y.Q., Zhang, H.M. and Ko, J.M. (2019), "Design formulas for vibration control of taut cables using passive MR dampers", Smart Struct. Syst., in press.
- Duan, Y.F., Tao, J.J., Zhang, H.M., Wang, S.M. and Yun, C.B. (2018), "Real-time hybrid simulation based on vector form intrinsic finite element and field programmable gate array", Struct. Control Health Monit., e2277, https://doi.org/10.1002/stc.2277.
- Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
- Friedmann, P.P. (1990), "Numerical methods for the treatment of periodic systems with applications to structural dynamics and helicopter rotor dynamics", Comput. Struct., 35(4), 329-347. https://doi.org/10.1016/0045-7949(90)90059-B.
- Fujino, Y., Warnitchai, P. and Pacheco, B.M. (1993), "Active stiffness control of cable vibration", J. Appl. Mech. - ASME, 60(4), 948-953. https://doi.org/10.1115/1.2901006
- Gattulli, V., Morandini, M. and Paolone, A. (2002), "A parametric analytical model for non-linear dynamics in cable-stayed beam", Earthq. Eng. Struct. D., 31(6), 1281-1300. https://doi.org/10.1002/eqe.162.
- Gehle, R.W. and Masri, S.F. (1998), "Active control of shallow, slack cable using the parametric control of end tension", Nonlinear Dynam., 17(1), 77-94. https://doi.org/10.1023/A:1008212828873
- Giaccu, G.F., Barbiellini, B. and Caracoglia, L. (2015), "Parametric study on the nonlinear dynamics of a three-stay cable network under stochastic free vibration", J. Eng. Mech, - ASCE, 141(6), 04014166. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000887.
- Gonzalez, A., Neild, S.A., Wagg, D.J. and Macdonald, J.H.G. (2008), "Modal stability of inclined cables subjected to vertical support excitation", J. Sound Vib., 318(3), 565-579. https://doi.org/10.1016/j.jsv.2008.04.031.
- Hsu, C.S. and Cheng, W.H. (1974), "Steady-state response of a dynamical system under combined parametric and forced excitations", J. Appl. Mech. - ASME, 41(2), 371-378. https://doi.org/10.1115/1.3423296
- Ibrahim, R.A. (1985), Parametric Random Vibration, Wiley, New York.
- Irvine, H.M., (1981), Cable Structures, MIT Press, Cambridge.
- Iyengar, R.N. and Rao, G. (1988), "Free vibrations and parametric instability of a laterally loaded cable", J. Sound Vib., 127(2), 231-243. https://doi.org/10.1016/0022-460X(88)90299-4.
- Johson, E.A., Christenson, R.E. and Spencer, B.F. (2003), "Semiactive damping of cables with sag", Comput.-Aided Civil Infrastruct. Eng., 18(2), 132-146. https://doi.org/10.1111/1467-8667.00305.
- Kozin, F. and Zhang, Z.Y. (1991), "On almost sure sample stability of nonlinear Ito differential equations", Probabilist. Eng. Mech., 6(2), 92-95. https://doi.org/10.1016/0266-8920(91)90022-V.
- Krenk, S. (2000), "Vibrations of a taut cable with an external damper", J. Appl. Mech. - ASME, 67(4), 772-776. doi:10.1115/1.1322037
- Lee, T.C. (1976), "A study of coupled Mathieu equations by use of infinite determinants", J. Appl. Mech. - ASME, 43(2), 349-352. doi:10.1115/1.3423838.
- Lin, Y.K. and Cai, G.Q. (1994), "Stochastic stability of non-linear systems", Int. J. Nonlinear Mech., 29, 539-553. https://doi.org/10.1016/0020-7462(94)90022-1
- Luongo, A. and Zulli, D. (2012), "Dynamic instability of inclined cables under combined wind flow and support motion", Nonlinear Dynam., 67(1), 71-87. https://doi.org/10.1007/s11071-011-9958-9
- Main, J.A. and Jones, N.P. (2001), "Evaluation of viscous dampers for stay-cable vibration mitigation", J. Bridge Eng. - ASCE, 6(6), 385-397. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(385).
- Manohar, C.S. and Ibrahim, R.A. (1999), "Progress in structural dynamics with stochastic parameter variations: 1987-1998", ASME Appl. Mech. Rev., 52(5), 177-197. doi:10.1115/1.3098933.
- Nagarajaiah, S. and Jung, H.J. (2014), "Smart tuned mass dampers: recent developments", Smart Struct. Syst., 13(2), 173-176. http://dx.doi.org/10.12989/sss.2014.13.2.173.
- Namachchivaya, N.S. (1991), "Almost sure stability of dynamical systems under combined harmonic and stochastic excitations", J. Sound Vib., 151, 77-90. https://doi.org/10.1016/0022-460X(91)90653-2
- Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear Oscillations, John Wiley & Sons, New York.
- Or, S.W., Duan, Y.F., Ni, Y.Q., Chen, Z.H. and Lam, K.H. (2008), "Development of Magnetorheological dampers with embedded piezoelectric force sensors for structural vibration control", J. Intel. Mat. Syst. Str., 19, 1327-1338. https://doi.org/10.1177/1045389X07085673.
- Ouni, M.H.E., Kahla, N.B. and Preumont, A. (2012), "Numerical and experimental dynamic analysis and control of a cable stayed bridge under parametric excitation", Eng. Struct., 45, 244-256. https://doi.org/10.1016/j.engstruct.2012.06.018.
- Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng. - ASCE, 119(6), 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961).
- Perkins, N.C. (1992), "Modal interactions in the non-linear response of elastic cables under parametric/external excitation", Int. J. Nonlinear Mech., 27(2), 233-250. https://doi.org/10.1016/0020-7462(92)90083-J.
- Rega, G., Vestroni, F. and Benedettini, F. (1984), "Parametric analysis of large amplitude free vibrations of a suspended cable", Int. J. Solids Struct., 20(2), 95-105. https://doi.org/10.1016/0020-7683(84)90001-5.
- Roberts, J.B. and Spanos, P.D. (1986), "Stochastic averaging: an approximate method of solving random vibration problem", Int. J. Nonlinear Mech., 21(2), 111-134. https://doi.org/10.1016/0020-7462(86)90025-9.
- Sinha, S.C. and Wu, D.H. (1991), "An efficient computational scheme for the analysis of periodic systems", J. Sound Vib., 151(1), 91-117. https://doi.org/10.1016/0022-460X(91)90654-3.
- Soong, T.T. and Spencer, B.F. Jr. (2002), "Supplemental energy dissipation: state-of-the-art and state-of-the-practice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X.
- Spencer, B.F. Jr. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng.- ASCE, 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845).
- Stupnicka, S. (1978), "The generalized harmonic balance method for determining the combination resonance in the parametric dynamic system", J. Sound Vib., 58(3), 347-361. https://doi.org/10.1016/S0022-460X(78)80043-1.
- Susumpow, T. and Fujino, Y. (1995), "Active control of multimodal cable vibrations by axial support motion", J. Eng. Mech.- ASCE, 121(9), 964-972. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:9(964).
- Symans, M.D. and Constantinou, M.C. (1999), "Semi-active control system for seismic protection of structures: a state-ofthe-art review", Eng. Struct., 21(6), 469-487. https://doi.org/10.1016/S0141-0296(97)00225-3.
- Takahashi, K. (1981), "An approach to investigate the instability of the multiple-degree-of-freedom parametric dynamic systems", J. Sound Vib., 78(4), 519-529. https://doi.org/10.1016/S0022-460X(81)80122-8.
- Takahashi, K. (1991), "Dynamic stability of cable subjected to an axial periodic load", J. Sound Vib., 144(2), 323-330. https://doi.org/10.1016/0022-460X(91)90752-6.
- Wang, H., Li, L.Y., Song, G.B., Dabney, J.B. and Harman, T.L. (2015), "A new approach to deal with sensor errors in structural controls with MR damper", Smart Struct. Syst., 16(2), 329-345. http://dx.doi.org/10.12989/sss.2015.16.2.329.
- Wang, X.Y., Ni, Y.Q., Ko, J.M. and Chen, Z.Q. (2005), "Optimal design of viscous dampers for multi-mode vibration control of bridge cables", Eng. Struct., 27(5), 792-800. https://doi.org/10.1016/j.engstruct.2004.12.013.
- Warminski, J., Zulli, D., Rega, G. and Latalski, J. (2016), "Revisited modeling and multimodal nonlinear oscillations of a sagged cable under support motion", Meccanica, 51(11), 2541-2575. https://doi.org/10.1007/s11012-016-0450-y
- Xia, Y. and Fujino, Y. (2006), "Auto-parametric vibration of a cable-stayed-beam structure under random excitation", J. Eng. Mech.- ASCE, 132(3), 279-286. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:3(279).
- Xie, W.C. (2006), "Moment Lyapunov exponents of a twodimensional system under both harmonic and white noise parametric excitations", J. Sound Vib., 289(1-2), 171-191. https://doi.org/10.1016/j.jsv.2005.02.001.
- Xu, Y.L., Yu, Z. and Ko, J.M. (1998), "Forced vibration studies of sagged cables with oil damper using a hybrid method", Eng. Struct., 20(8), 692-705. https://doi.org/10.1016/S0141-0296(97)00100-4.
- Ying, Z.G. and Ni, Y.Q. (2017), "Eigenvalue analysis approach to random periodic parameter-excited stability: application to a stay cable", J. Eng. Mech. ASCE, 143(5), 06017002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001213.
- Ying, Z.G., Ni, Y.Q. and Chen, Z.H. (2009), "A symplectic algorithm for the stability analysis of nonlinear parametric excited systems", Int. J. Struct. Stab. Dyn., 9(3), 561-584. https://doi.org/10.1142/S0219455409003156.
- Ying, Z.G., Ni, Y.Q. and Ko, J.M. (2006), "Parametrically excited instability analysis of a cable under two support motions", Int. J. Struct. Stab. Dyn., 6(1), 43-58. https://doi.org/10.1142/S0219455406001794.
- Ying, Z.G., Ni, Y.Q. and Ko, J.M. (2007), "Parametrically excited instability analysis of a semi-actively controlled cable", Eng. Struct., 29(4), 567-575. https://doi.org/10.1016/j.engstruct.2006.05.020.
- Zhou, Q., Nielsen, S.R.K. and Qu, W. (2010), "Stochastic response of an inclined shallow cable with linear viscous dampers under stochastic excitation", J. Eng. Mech. - ASCE, 136(11), 1411-1421. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000188.
Cited by
- System simulation and synchronization for optimal evolutionary design of nonlinear controlled systems vol.26, pp.6, 2019, https://doi.org/10.12989/sss.2020.26.6.797
- Modal Interaction-Induced Parametric Resonance of Stayed Cable: A Combined Theoretical and Experimental Investigation vol.2021, 2019, https://doi.org/10.1155/2021/5797761