• Title/Summary/Keyword: small cavity

Search Result 476, Processing Time 0.026 seconds

Simple Technique for Measurement of Complex Permittivity and Detection of Small Permittivity Change Using Partially Open Cavity

  • Park, Sangbok;Chung, Young-Seek;Cheon, Changyul
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.268-272
    • /
    • 2014
  • This letter presents a measurement methodology of the complex permittivity of liquid using a partially open cavity in narrow band. The partially open cavity (POC) can measure dielectric small changes caused by the temperature variation of the liquid inside the cavity as well. Using the resonance frequency and unloaded quality factor of the proposed POC, the complex permittivity is evaluated. The apertures on the walls of the cavity are designed to circulate the liquid inside to outside of the POC and located at the corner area of the cavity to minimize the disturbance of field distribution at the dominant mode. The results measured by the proposed POC were compared with those by the conventional open-ended probe and Cole-Cole equation. The POC showed better performance in measuring small dielectric constant changes than the open-ended probe.

The prediction of ventilated supercavitation shapes according to the angle of attack of a circular cavitator (원형 캐비테이터의 받음각에 따른 환기초공동 형상 예측 연구)

  • Yi, Jong-Ju;Kim, Min-Jae;Paik, Bu-Geun;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.22-30
    • /
    • 2021
  • Ventilated cavity shapes by varying angle of attack of a circular cavitator were predicted based on Logvinovich's Independence Principle in order to verify the cavity shape prediction method. The prediction results were compared with model experiments conducted in the high-speed cavitation tunnel. In the prediction of the cavity centerline, the movement of the cavity centerline due to the effect of gravity and cavitator's angle of attack were well predicted. In the prediction of the cavity contour, it was found that the cavity edge prediction error increased as the angle of attack increased. The error of the upper cavity contour was small at the positive angle of attack, and the error of the lower cavity contour was small at the negative angle of attack.

Investigation on the characteristics of a cavity-dumped Nd:glass laser (Cavity-dumping형 Nd:glass laser의 제작 및 특성 조사)

  • 차용호;강응철;남창희
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.130-134
    • /
    • 1995
  • A small signal gain coefficient of Nd:glass was measured and a cavity-dumped laser was constructed. To measure the small signal gain coefficient, we constructed a resonator consisting of Nd:glass, Pockels cell, polarizing beam splitter. The measured small signal gain coefficient was $0.088 cm_{-1}$ when the input energy was 100 J and the round-trip internal loss of the resonator was 56%. The cavity-dumped laser was constructed using Nd:glass. 2 m radius of curvature HR-mirrors, Pockels cell, polarizinig beam splitter and $\lambda/4$ plate. The output energy of cavity-dumped laser was 0.85 J at 140 J input energy and the laser pulse width was 8 ns.s 8 ns.

  • PDF

On the Forced Resonant Characteristics of Partially Filled Electrically Small Cavity with Loaded Reactance

  • Kim, Ki-Chai
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.2
    • /
    • pp.176-181
    • /
    • 2001
  • This paper presents the farced resonant characteristics of an electrically small cavity partially filled with dielectric material. The method of moments with Galerkins procedure is used to determine the farced resonant characteristics of the small cavity. In order to obtain the equations of the external reactance gives rise to the farced resonance at a given frequency, the cavity with external reactance can be treated as two-port network which has the admittance parameters. Numerical results show that the forced resonance, series or parallel resonance, can be obtained by the controlling the external reactance. To verify the availability of the theoretical analysis, experiments are carried out for the bakelite as the material by measuring the length of external reactance at operating frequencies.

  • PDF

Analysis of cavity expansion based on general strength criterion and energy theory

  • Chao Li;Meng-meng Lu;Bin Zhu;Chao Liu;Guo-Yao Li;Pin-Qiang Mo
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.9-19
    • /
    • 2024
  • This study presents an energy analysis for large-strain cavity expansion problem based on the general strength criterion and energy theory. This study focuses on the energy dissipation problem during the cavity expansion process, dividing the soil mass around the cavity into an elastic region and a plastic region. Assuming compliance with the small deformation theory in the elastic region and the large deformation theory in the plastic region, combined with the general strength criterion of soil mass and energy theory, the energy dissipation solution for cavity expansion problem is derived. Firstly, from an energy perspective, the process of cavity expansion in soil mass is described as an energy conversion process. The energy dissipation mechanism is introduced into the traditional analysis of cavity expansion, and a general analytical solution for cavity expansion related to energy is derived. Subsequently, based on this general analytical solution of cavity expansion, the influence of different strength criterion, large-strain, expansion radius, cavity shape and characteristics of soil mass on the stress distribution, displacement field and energy evolution around the cavity is studied. Finally, the effectiveness and reliability of theoretical solution is verified by comparing the results of typical pressure-expansion curves with existing literature algorithms. The results indicate that different strength criterion have a relatively small impact on the displacement and strain field around the cavity, but a significant impact on the stress distribution and energy evolution around the cavity.

Resistance Reduction of a High Speed Small Boat by Air Lubrication

  • Jang Jin-Ho;Kim Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • The resistance reduction by an air lubrication effect of a large air cavity covering the hull bottom surface and the similarity relations involved have been investigated with a series of towing tank tests of three geometrically similar models. The test results of geometrically similar models have indicated that a large air cavity was formed beneath the bottom having a backward-facing step by artificially supplying air is effective for resistance reduction. The areas of air cavity and the required flow rates of air are directly related to the effective wetted surface area. The traditional extrapolation methods seem to be applicable to the estimation of the resistance in the tested range if corrections are made to account the changes in the frictional resistance caused by the changes in the effective wetted surface area. To investigate the effectiveness of air lubrication in improving the resistance performance of a practical ship, a small test boat having a backward-facing step under its bottom has been manufactured and speed trials in a river have been performed. Air has been supplied artificially into the downstream region of the bottom step to form a large air cavity covering the bottom surface. The results have confirmed the practical applicability of air lubrication for the resistance reduction of a small high-speed boat.

A Study on the Detection of Small Cavity Located in the Hard Rock by Crosswell Seismic Survey (경암 내 소규모 공동 탐지를 위한 시추공간 탄성파탐사 기법의 적용성 연구)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • For the dectection of small cavity in the hard rock, we investigated the feasibility of crosswell travel-time tomography and Kirchhoff migration technique. In travel-time tomography, first arrival anomaly caused by small cavity was investigated by numerical modeling based on the knowledge of actual field information. First arrival delay was very small (<0.125 msec) and detectable receiver offset range was limited to 4m with respect to $1\%$ normalized first arrival anomaly. As a consequence, it was turned out that carefully designed survey array with both sufficient narrow spatial spacing and temporal (<0.03125 msec) sampling were required for small cavity detection. Also, crosswell Kirchhoff migration technique was investigated with both numerical and real data. Stack section obtained by numerical data shows the good cavity image. In crosswell seismic data, various unwanted seismic events such as direct wave and various mode converted waves were alto recorded. To remove these noises und to enhance the diffraction signal, combination of median and bandpass filtering was applied and prestack and stacked migration images were created. From this, we viewed the crosswell migration technique as one of the adoptable method for small cavity detection.

LES for unsteady flow past n cavity (공동을 지나는 비정상 유동에 대한 LES 해석)

  • Lim Jongsoo;shin Dongshin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.791-794
    • /
    • 2002
  • Cavity is inevitably included in automobile vehicle configuration. The complex unsteady flow and sound waves generated by the cavity are very important issues because of the involved fluid dynamics and the practical importance in the field of aerodynamics. The LES method used is a conventional one with Smagorinsky eddy-viscosity model and the computational grid is small enough to be handled by workstation-level computers. LES can successfully simulate of cavity noise analysis.

  • PDF

A robust noise rejector in a small cavity

  • Seo, Suk-Bong;Ahn, Woo-Hyun;Chung, Tae-Jin;Chung, Chan-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.115-118
    • /
    • 1996
  • This paper studies on an active noise control to reduce noise sound level in a small cavity. Ideally, high gain control solves this problem, but, in practice, there exist nonlinear characteristics and modelling errors of the small cavity, which make the control more complicated. H$_{\infty}$ control can be used in an uncertain system after determining uncertain boundary and solved algebraically or numerically. In this paper, the numerical one, LMI(Linear Matrix Inequality), is used to get controller. Finally, experiment result shows the performance of the controller..

  • PDF

ANC in the small cavity using CDM (CDM을 이용한 소형 밀폐 공간 내의 소음제어)

  • Park, Jang-Kwan;Koo, Choon-Keun;Lee, Hae-Soo;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.982-984
    • /
    • 1999
  • For active noise control system, one would choose one of two methods: Fixed control design and Adaptive filter design. Each one has its own advantages. But fixed controller design method prefer for active noise control in a small cavity system. In this paper, we design a controller for the small cavity system using CDM and compare controller using CDM with $H{\infty}$. The order of the resulting controller is lower than that of the robust $H{\infty}$ design, which means CDM will be more prefer for implementation purpose designs.

  • PDF