• Title/Summary/Keyword: slump value

Search Result 145, Processing Time 0.028 seconds

A Study on Applicability Evaluation according to Strength Range of High-Strength Fire Resistance Concrete (고강도 내화 콘크리트의 강도 영역에 따른 현장 적용성 평가에 관한 연구)

  • Jang, Jong-Min;Baek, Young-Un;Yuk, Tae-Won;Park, Dong-Soo;Lee, Hang-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.177-178
    • /
    • 2023
  • In this study, the mass production process was simulated using a 1m3 batcher plant to evaluate the application of high-strength fire resistance concrete. The strength ranges of concrete were set to 50, 60, 70, and 80 MPa, and each concrete mix proportions was selected through preliminary experiments in the laboratory. For the selected concrete mix proportions, after the mixer load value was stabilized in the batcher plant, the slump flow and air content of the fresh concrete were evaluated, and the compressive strength was evaluated up to 56 days. As a result of the experiment, both the slump flow and air content of the fresh concrete satisfied the target performance, and in the case of compressive strength, 50 and 60 MPa satisfied the target performance at 28 days and 70 and 80 MPa at 56 days.

  • PDF

The Effect of Combined Aggregates on Fluidity of the High Fluid Concrete Containing GGBFS (고로슬래그미분말을 혼입한 고유동콘크리트에서 골재조합이 콘크리트 유동성상에 미치는 영향에 관한 실험 연구)

  • Kim, Jae-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.79-86
    • /
    • 2003
  • The purpose of study is to offer base data for high fluid concrete mix property, as grasp effect of aggregate to reach much more effect for producing high fluid concrete. For this study, there are three types of combined aggregates, river sand + river aggregate(type A), river sand + crusted aggregate(type B), washed sea sand + crushed aggregate(type C) and take a factor, water-contents, water-binder ratio and S/a. And so, we had following conclusion, resulting application-ability of high fluid mortar by K-slump tester to use a handy consistency measuring instrument. And so, we had following conclusion, resulting application-ability of high fluid concrete by K-slump tester to use a handy consistency measuring instrument. 1) In cafe of regular water binder ratio, high fluid concrete suffered much effect of combined aggregates and water binder ratio. Range of water binder ratio by combined aggregates is w/b 0.4 downward(type A and B), w/b 0.35 downward(type C). 2) Water contents to need for producing high fluid concrete is minimum 170kg/$\textrm{m}^3$ without regard to combined aggregates. 3) The effect of S/a on high fluid concrete by combined aggregates is approximately S/a 50% (type A and B), s/a 50-55% (type C). 4) Consistency measuring of high fluid concrete by K-slump tester is possible and first indication value, high fluid concrete can be produced, is 6~10.5cm.

The characteristics of Low Blaine Cement (저 분말도 포틀랜드 시멘트의 특성)

  • 김재영;전준영;송종택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.13-18
    • /
    • 1998
  • This experiments carried out in order to investigate decreasing of the hydration heat and physical characteristics of the low blaine OPC. The experiments results indicated hydration heat was reduced by about 15% in th low blaine OPC(2300$\textrm{cm}^2$/g). The Mini-slump value of the cement paste was significantly increased and viscosity of one was decreased as blaine value in OPC decrease.

  • PDF

A Study on the Mechanical Characteristics of the replaced concrete by the Waste Glass Powder (폐류리분미를 사용한 콘크리트의 역학적 특성에 관한 연구)

  • 김명재;송창영;정호철;설광욱;부척량
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.247-253
    • /
    • 1997
  • This study performed the experimental research comparing mechanical characteristics of the concrete replaced by the waste glass powder with the non-replaced concrete. The experimental parameters are kinds of the waste glass powder and replacement rate of the waste glass powder on the cement. As as result, the slump value, the flow value and the amount of air were decreased as the waste glass powder replacement rate increased, and the strength was increased when the waste glass powder replacement rate is 5%~15%.

  • PDF

A Fundamental Study on development of Ultra-Flow Concrete - part 1. The rheology test of mortar - (초유동 콘크리트의 개발에 관한 기초적 연구 -제 1보 : 모르터의 레올로지 시험 -)

  • 김화중;김재훈;박정민;최신호;이승조;김태곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.42-47
    • /
    • 1995
  • The flow properties of xoncrete depend on form of fine aggregate, the ratio of voides of fine aggregate and cement paste So, in this study, investigated for the improvement of rheology properties on mortar and paste replaced by Zeolite $\circled1$ The slump flow have to do with correlation on yielding value of mortar respectirely. $\circled2$The increase ratio of strength Mortar and paste 10% replaced by Zeolite was presented significently but the slump flow was decteased stiffly as the increase of plastic viscosity at the ratio of replacement over 10%

  • PDF

Workability Characteristics of Reinforced Clayey Soil (보강 점성토의 워커빌리티 특성)

  • Lee, Sang-Ho;Kim, Sang-Chul;Cha, Hyun-Ju
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.370-374
    • /
    • 2001
  • This study was performed to find the basic data, as needed on the reinforced clayey soil construction work, by estimating job difficulty and optimum moisture content of the reinforced clayey soil, according to its slump test and workability test. As a result, it has been found that the more increasing reinforced clayey soil's moisture content, the higher its slump value. Its 25% moisture content: the reinforced clayey soil except the fiber reinforced soil was able to work with hand; the fiber reinforced soil with the 0.5% or 1.0% of fiber ratio was poor cohesion because of surplus quantity of fiber. Its moisture content between 30% and 35%: shoveling is somewhat difficult but troweling is possible. This study will be needed to modify and add by another.

  • PDF

Influence on the Plastic Shrinkage of Concrete for a Varieties of Consistency (콘크리트의 Consistency 변화가 소성수축에 미치는 영향)

  • 오무영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4626-4630
    • /
    • 1978
  • The objective of this study is to investigate how the varieties of consistency of fresh concrete influence on the plastic shrinkage in dry condition. The test was conducted under the controlled chamber in which the temperature was kept at 25 ${\pm}$2$^{\circ}C$, the humidity 35 ${\pm}$3%, and the wind velocity 4.0 ${\pm}$0.5m/sec. The results obtained from the test are as follow. 1) The rate of evaporation was highest at 2-3 hour after casting, and decreased gradually. 2) The plastic shrinkage was increased as to the slump values. The shrinkage rate was very highest at 2-4 hour and hardly showed any changes after 6 hour. 3) The recommendation for good cloncrete is that slump value should be as low as possible in construction.

  • PDF

Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique

  • Cevik, Abdulkadir;Sonebi, Mohammed
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.475-490
    • /
    • 2008
  • The paper explores the potential of applicability of Genetic programming approach (GP), adopted in this investigation, to model the combined effects of five independent variables to predict the mini-slump, the plate cohesion meter, the induced bleeding test, the J-fiber penetration value, and the compressive strength at 7 and 28 days of self-compacting slurry infiltrated fiber concrete (SIFCON). The variables investigated were the proportions of limestone powder (LSP) and sand, the dosage rates of superplasticiser (SP) and viscosity modifying agent (VMA), and water-to-binder ratio (W/B). Twenty eight mixtures were made with 10-50% LSP as replacement of cement, 0.02-0.06% VMA by mass of cement, 0.6-1.2% SP and 50-150% sand (% mass of binder) and 0.42-0.48 W/B. The proposed genetic models of the self-compacting SIFCON offer useful modelling approach regarding the mix optimisation in predicting the fluidity, the cohesion, the bleeding, the penetration, and the compressive strength.

A Study on the Chemical Admixture According to Target Slump Value by Crushed Sand Replacement Rate (부순모래 치환율별 목표슬럼프 값 고정에 따른 화학혼화제의 특성에 관한 연구)

  • Ryu, Hyun-Gi;Cho, Myeong-Ken
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.87-93
    • /
    • 2008
  • With an increased use of alternative aggregate due to exhaustion of quality aggregate resources, the amount of used crushed aggregates have been increased and as a result, development of admixture materials has also been improved and its amount of use is increasing from day to day in order to secure quality in concrete. Accordingly, the purpose of this study is to make concrete of good quality by using chemical admixture developed in this study by replacement rate of fine aggregate. At first, susceptibility, compressive strength ratio and length change ratio in both fresh and hardened concrete were evaluated according to corresponding regulation. As for high performance related regulation, APC NO.3 and PC series were going to rule, and as for AE agent regulation, replacement ratio of fine aggregate of high performance chemical admixture was 10:0 and other chemical admixture met quality regulation for AE agent.

Evaluation Method of Segregation Resistance of Normal Strength Concrete Depending on Various Water Content (단위수량 변화에 따른 보통콘크리트의 재료분리 저항성 평가 방법 제안)

  • ZHAO, YANG;Lu, LiangLiang;Park, Yong-Jun;Jo, Man-Ki;Han, In-Deok;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.38-39
    • /
    • 2014
  • In this research, the evaluation method of segregation resistance is suggested using the ratio of maximum and minimum values of concrete slump flow. As a result, in the case of normal concrete range from 80 to 210 mm of slump, it is considered that managing the EIS-N value to less than 1.10 is the most favorable for segregation determination.

  • PDF