• Title/Summary/Keyword: sloshing mode

Search Result 31, Processing Time 0.022 seconds

A Study on Vibration Characteristics with Sloshing Mode Effect in Water Tank Structure (유체 슬로싱모드가 탱크의 진동에 미치는 영향에 대한 연구)

  • Bae, Sung-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.88-95
    • /
    • 2003
  • Liquid storage rectangular tank structures are used in many fields of airplane and marine engineering. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance. Therefore it is essentially important to estimate vibration characteristics of tank structures. Many Investigators studied the vibration of cylindrical and rectangular tank structures containing still fluid. In general, the eigenbehavior of interior liquid is characterized by the sloshing mode while that of the structure by the bulging mode. However, the structure deformation to the sloshing mode and the liquid free-surface fluctuation to the bulging mode have been neglected in the classical added-mass computation. in the present paper, we study the vibration characteristics with sloshing mode effect.

Study on Sloshing Behaviors in Liquid Storage Tank with Rectangular Cross Section (사각단면 액체저장탱크에서의 슬로싱 거동 연구)

  • 윤성호;이은동;박기진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1087-1090
    • /
    • 2003
  • In this study, experimental procedures were suggested to investigate the sloshing behavior of a liquid storage tank subjected to inevitably external vibrating conditions. For this purpose. liquid storage tank with rectangular cross section was made of an acrylic resin for the visualization of liquid fluctuation. A specially designed vibrator was used to provide a specified vibrating condition to the liquid storage tank. Extrapolation technique was applied to determine sloshing natural frequency by using various sloshing frequencies at each vibrating displacement and liquid contents at a fixed vibrating frequency. Sloshing mode was also determined from continuous images or liquid fluctuation captured from a video camera. In addition, change in the height of the liquid free surface was measured by using a floating target and a laser displacement sensor. It is found that the suggested method can be applicable to identify the sloshing behavior of liquid storage tank with rectangular cross section.

  • PDF

Design of Tank Velocity Based on Multi-Mode Natural Frequencies for Suppression of Sloshing (다모드 고유 진동수를 고려한 슬로싱 억제용 용기 속도의 설계)

  • Sim, Taegwon;Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.311-320
    • /
    • 2017
  • Suppression of sloshing is essential to achieve fast transportation and stable maneuvering of tanks partially filled with liquid. In this study, numerical simulations are performed to investigate the effects of the acceleration magnitude and the acceleration duration of triangular velocity profiles on sloshing when a rectangular tank moves horizontally. We previously reported, based on only the first natural mode, that sloshing is significantly suppressed when the acceleration duration equals the first natural period of sloshing. On the other hand, the present CFD simulations find the best acceleration duration for minimum sloshing and explains the results considering higher modes as well as the first mode. We also perform the analysis using an equivalent model based on masses and springs, and evaluate its accuracy by comparing it with the CFD simulation results.

Evaluation for Sloshing Behaviors of Liquid Storage Tank (액체연료탱크의 슬로싱 거동 평가기법)

  • 윤성호;박기진;심국상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.314-317
    • /
    • 2002
  • The sloshing phenomenon sometimes happens to be occurred in the liquid storage tank due to the unexpected and/or inevitable vibrating conditions and may result in severe effects on the structural stability. This study deals with the development of experimental techniques for the evaluation of sloshing behavior in the liquid storage tank and for the identification of natural frequencies and mode shapes by varying with various vibrating conditions. In addition, suitable method is suggested to minimize the sloshing effect on the liquid storage tank and its validity is experimentally investigate d.

  • PDF

Free Vibration Analysis of Aboveground LNG-Storage Tanks by the Finite Element Method

  • Cho, Jin-Rae;Lee, Jin-Kyu;Song, Jeong-Mok;Park, Suk-Ho;Lee, Joong-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.633-644
    • /
    • 2000
  • Recently, in proportion to the increase of earthquake occurrence-frequency and its strength in the countries within the circum-pan Pacific earthquake belt, a concept of earthquake-proof design for huge structures containing liquid has been growing up. This study deals with the refinement of classical numerical approaches for the free vibration analysis of separated structure and liquid motions. According to the liquid-structure interaction, LNG-storage tanks exhibit two distinguished eigenmodes, the sloshing mode and the bulging mode. For the sloshing -mode analysis, we refine the classical rigid-tank model by reflecting the container flexibility. While, for the bulging-mode analysis, we refine the classical uncoupled structural vibration system by taking the liquid free-surface fluctuation into consideration. We first construct the refined dynamic models for both problems, and present the refined numerical procedures. Furthermore, in order for the efficient treatment of large-scale matrices, we employ the Lanczos iteration scheme and the frontal-solver for our test FEM program. With the developed program we carry out numerical experiments illustrating the theoretical results.

  • PDF

The Sloshing Effect on the Roll Motion and 2-DoF Motions of a 2D Rectangular Cylinder (2차원 사각형 주상체의 횡동요 및 2자유도 운동에 미치는 슬로싱의 영향)

  • Kim, Yun-Ho;Sung, Hong-Gun;Cho, Seok-Kyu;Choi, Hang-Shoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.69-78
    • /
    • 2013
  • This study is constructed to investigate the sloshing effect on the motions of a two-dimensional rectangular cylinder experimentally and numerically. The modes of motion under consideration are sway and roll, and also experimental cases are divided by two categories; 1-DoF roll motion and 2-DoF motion (Coupling sway and roll). It is found that the sway response is considerably affected by the motion of the fluid, particularly near the sloshing natural frequency, while the roll response changes comparatively small. The dominant mode of motion is analyzed for 2-DoF experiments as well. The measured data for 1-DoF motions is compared with numerical results obtained by the Multi-modal approach. The numerical schemes vary in detail with the number of dominant sloshing modes; i.e. there is a single dominant mode for the Single-dominant method, while the Model 2 method assumes that the first two modes are superior. For the roll motion, numerical results obtained by the two different methods are relatively in good agreement with the experiments, and these two results are similar in most wave frequency range. However, the discrepancies are apparent where the fluid motion is not governed by a single mode. But both of numerical methods over-predict the motion at the vicinity of the sloshing natural frequency. In order to correct the discrepancy, the modal damping needs to be investigated more precisely. Furthermore, another multi-modal approach, such as the Boussinesq-type method, seems to be required in the region of the intermediate liquid.

Sloshing Minimization Technique in Liquid Fuel Tank By the Use of Baffle (배플을 적용한 액체연료탱크 내의 슬로싱 억제 기법 연구)

  • 박기진;윤성호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.917-920
    • /
    • 2003
  • The sloshing phenomenon sometimes happens to occur in a liquid fuel tank due to the unexpected and/or inevitable vibrating conditions and may result in severe effects on the structural stability. This study deals with the development of experimental techniques for the evaluation of sloshing behaviors in the liquid fuel tank and for the identification of natural frequencies and mode shapes by varying with various vibrating conditions. Measurements of the pressure and load acting on the side surface of vibrated liquid fuel tank are carried in order to identify the effects of sloshing phenomenon by using various types of baffles. The results show that the baffles can be used to minimize the sloshing phenomenon in liquid fuel tank effectively

  • PDF

Numerical Study on Effects of Velocity Profile of Liquid Container on Sloshing (액체 용기의 속도 프로파일이 슬로싱에 미치는 영향 해석)

  • Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.313-319
    • /
    • 2016
  • It is very important to understand and control the sloshing in a liquid container that is partially filled with liquid. Previous studies focused primarily on the sloshing and resonance caused by sinusoidal excitations, while the present study focuses on understanding and suppressing sloshing in a container that moves rapidly from a given point to another in industrial applications. To achieve this, we first numerically predict the two-phase flow induced by the horizontal movement of a rectangular container. Then we analyze the effects of container-velocity profile (in particular acceleration/deceleration duration) on sloshing. Results show that sloshing is significantly suppressed when the acceleration/deceleration duration is a multiple of the 1st-mode natural period of sloshing.

Input Shaping for Control of Liquid Sloshing (액체 슬로싱 제어를 위한 입력성형)

  • Kim, Dong-Joo;Hong, Seong-Wook;Kim, Kyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1018-1024
    • /
    • 2011
  • Liquid sloshing occurs when a partially filled liquid tank is subjected to undesirable external forces or acceleration/deceleration for positioning control. Installation of baffles is still the most popular way to suppress the sloshing, but recent successes of input shaping in reducing structural vibrations may give a possible alternative. We aim at investigating the applicability of input shaping to sloshing suppression by numerically solving fluid motions in a rectangular tank. The tank is partially filled with water and it is suddenly put into a sequence of horizontal motions of acceleration and constant speed. The flow is assumed to be two-dimensional, incompressible, and in viscid, and a VOF two-phase model is used to capture the free surface. Results show that the sloshing can be successfully suppressed by shaping the input, i.e., the velocity or acceleration profile of tank. Three different input shapers (ZII, ZVD, and two-mode convolved ZV shapers) are tested and compared in this study Among them, the convolved ZV shaper shows a best performance to eliminate the sloshing almost completely.

Nonlinear sloshing in rectangular tanks under forced excitation

  • Zhao, Dongya;Hu, Zhiqiang;Chen, Gang;Lim, Serena;Wang, Shuqi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.545-565
    • /
    • 2018
  • A numerical code is developed based on potential flow theory to investigate nonlinear sloshing in rectangular Liquefied Natural Gas (LNG) tanks under forced excitation. Using this code, internal free-surface elevation and sloshing loads on liquid tanks can be obtained both in time domain and frequency domain. In the mathematical model, acceleration potential is solved in the calculation of pressure on tanks and the artificial damping model is adopted to account for energy dissipation during sloshing. The Boundary Element Method (BEM) is used to solve boundary value problems of both velocity potential and acceleration potential. Numerical calculation results are compared with published results to determine the efficiency and accuracy of the numerical code. Sloshing properties in partially filled rectangular and membrane tank under translational and rotational excitations are investigated. It is found that sloshing under horizontal and rotational excitations share similar properties. The first resonant mode and excitation frequency are the dominant response frequencies. Resonant sloshing will be excited when vertical excitation lies in the instability region. For liquid tank under rotational excitation, sloshing responses including amplitude and phase are sensitive to the location of the center of rotation. Moreover, experimental tests were conducted to analyze viscous effects on sloshing and to validate the feasibility of artificial damping models. The results show that the artificial damping model with modifying wall boundary conditions has better applicability in simulating sloshing under different fill levels and excitations.