DOI QR코드

DOI QR Code

Numerical Study on Effects of Velocity Profile of Liquid Container on Sloshing

액체 용기의 속도 프로파일이 슬로싱에 미치는 영향 해석

  • Kim, Dongjoo (Dept. of Mechanical Engineering, Kumoh Nat'l Institute of Technology)
  • 김동주 (금오공과대학교 기계공학과)
  • Received : 2016.03.09
  • Accepted : 2016.03.15
  • Published : 2016.05.01

Abstract

It is very important to understand and control the sloshing in a liquid container that is partially filled with liquid. Previous studies focused primarily on the sloshing and resonance caused by sinusoidal excitations, while the present study focuses on understanding and suppressing sloshing in a container that moves rapidly from a given point to another in industrial applications. To achieve this, we first numerically predict the two-phase flow induced by the horizontal movement of a rectangular container. Then we analyze the effects of container-velocity profile (in particular acceleration/deceleration duration) on sloshing. Results show that sloshing is significantly suppressed when the acceleration/deceleration duration is a multiple of the 1st-mode natural period of sloshing.

액체가 부분적으로 채워져 있는 용기에서 발생하는 슬로싱 현상을 이해하고 이를 효과적으로 제어하는 것은 매우 중요하다. 선행 연구들이 대부분 사인파형(sinusoidal) 가진에 의한 슬로싱 및 공진 현상에 관심을 가진 반면, 본 연구에서는 산업 현장에서 액체 용기를 빠르게 이송시킬 때 발생하는 슬로싱을 이해하고 억제하고자 하였다. 즉, 사각 용기를 수평방향으로 빠르게 이송시킬 때 발생하는 2상 유동을 수치해석으로 구한 후, 용기의 속도 프로파일(특히 가속 및 감속 시간)이 슬로싱에 미치는 영향을 분석하였다. 그 결과 용기의 가감속 시간이 1차 모드 고유주기의 정수배가 될 때 슬로싱이 상당히 억제되는 것을 관찰하였고, 이는 슬로싱 억제 방안으로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Ibrahim, R. A., 2005, Liquid Sloshing Dynamics: Theory and Applications, Cambridge University Press.
  2. Rebouillat, S. and Liksonov, D., 2010, "Fluid-Structure Interaction in Partially Filled Liquid Containers: A Comparative Review of Numerical Approaches," Computer & Fluids, Vol. 39, No. 5, pp. 739-746. https://doi.org/10.1016/j.compfluid.2009.12.010
  3. Kim, D., Hong, S.-W. and Kim, K., 2011, "Input Shaping for Control of Liquid Sloshing," Journal of KSPE, Vol. 28, No. 9, pp. 1018-1024.
  4. Frandsen, J. B. and Borthwick, A. G. L, 2004, "Simulation of Sloshing Motions in Fixed and Vertically Excited Containers Using a 2-D Inviscid $\sigma$-Tranformed Finite Difference Solver," J. Fluids Struct., Vol. 18, No. 2, pp. 197-214. https://doi.org/10.1016/j.jfluidstructs.2003.07.004
  5. Cho, J. R. and Lee, H. W., 2004, "Numerical Study on Liquid Sloshing in Baffled Tank by Nonlinear Finite Element Method," Comput. Methods Appl. Mech. Engrg., Vol. 193, No. 23-26, pp. 2581-2598. https://doi.org/10.1016/j.cma.2004.01.009
  6. Chen, B.-F. and Nokes, R., 2005, "Timeindependent Finite Difference Analysis of Fully Non-linear and Viscous Fluid Sloshing in a Rectangular Tank," Vol. 209, pp. 47-81. https://doi.org/10.1016/j.jcp.2005.03.006
  7. Akyildiz, H. and Unal, N. E., 2006, "Sloshing in a Three-dimensional Rectangular Tank: Numerical Simulation and Experimental Validation," Ocean Eng., Vol. 33, pp. 2135-2149. https://doi.org/10.1016/j.oceaneng.2005.11.001
  8. Liu, D. and Lin, P., 2008, "A Numerical Study of Three-dimensional Liquid Sloshing in Tanks," J. Comput. Phys., Vol. 227, pp. 3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006
  9. Wu, G. X., Ma, Q. W. and Taylor, R. E., 1998, "Numerical Simulation of Sloshing Waves in a 3D Tank Based on a Finite Element Method," Appl. Ocean Res., Vol. 20, pp. 337-355. https://doi.org/10.1016/S0141-1187(98)00030-3
  10. Terashima, K. and Yano, K., 2001, "Slosh Analysis and Suppression Control of Tilting-Type Automatic Pouring Machine," Control Eng. Pract., Vol. 9, No. 6, pp. 607-620. https://doi.org/10.1016/S0967-0661(01)00023-5
  11. Hubinskỳ, P. and Pospiech, T., 2010, "Slosh-Free Positioning of Containers with Liquids and Flexible Conveyor Belt," J. Elec. Eng., Vol. 61, No. 2, pp. 65-74. https://doi.org/10.2478/v10187-010-0010-y
  12. Hong, S.-W. and Bae, G.-H., 2013, "A Method of Effective Vibration Reduction for Positioning Systems Undergoing Frequent Short-distance Movement," Journal of KSMTE, Vol. 22, No. 3, pp. 421-428.