참고문헌
- Abramowitz, M., Stegun, I.A., 1966. Handbook of mathematical functions. Appl. Math. Sci. 55, 62.
- Abramson, H.N., 1966. The Dynamic Behavior of Liquids in Moving Containers. NASA SP-106. NASA Special Publication, p. 106.
- Akyildiz, H., Unal, E., 2005. Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing. Ocean Eng. 32 (11), 1503-1516.
- Bandyk, P.J., Beck, R.F., 2011. The acceleration potential in fluidebody interaction problems. J. Eng. Math. 70(1-3), 147-163. https://doi.org/10.1007/s10665-010-9446-0
- Benjamin, T.B., Ursell, F., 1954. The stability of the plane free surface of a liquid in vertical periodic motion. Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 225(1163), 505-515. The Royal Society. https://doi.org/10.1098/rspa.1954.0218
- Bouscasse, B., Colagrossi, A., Souto-Iglesias, A., Cercos-Pita, J.L., 2014a. Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. I. Theoretical formulation and numerical investigation. Phys. Fluid. 26(3), 033103. https://doi.org/10.1063/1.4869233
- Bouscasse, B., Colagrossi, A., Souto-Iglesias, A., Cercos-Pita, J.L., 2014b. Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. II. Experimental investigation. Phys. Fluid. 26(3), 033104. https://doi.org/10.1063/1.4869234
- Celebi, M.S., Akyildiz, H., 2002. Nonlinear modeling of liquid sloshing in a moving rectangular tank. Ocean Eng. 29(12), 1527-1553. https://doi.org/10.1016/S0029-8018(01)00085-3
- Chen, Y.H., Hwang, W.S., Ko, C.H., 2007. Sloshing behaviors of rectangular and cylindrical liquid tanks subjected to harmonic and seismic excitations. Earthq. Eng. Struct. Dynam. 36(12), 1701-1717. https://doi.org/10.1002/eqe.713
- Chen, Y.H., Hwang,W.S., Tsao,W.H., 2017. Nonlinear sloshing analysis by regularized boundary integral method. J. Eng. Mech. 143(8), 04017046. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001255
- Chen, Z., Zong, Z., Li, H.T., Li, J., 2013. An investigation into the pressure on solid walls in 2D sloshing using SPH method. Ocean Eng. 59, 129-141. https://doi.org/10.1016/j.oceaneng.2012.12.013
- Faltinsen, O.M., 1974. A nonlinear theory of sloshing in rectangular tanks. J. Ship Res. 18(4).
- Faltinsen, O.M., 1978. A numerical nonlinear method of sloshing in tanks with twodimensional flow. J. Ship Res. 22(3).
- Faltinsen, O.M., Timokha, A.N., 2001. An adaptive multimodal approach to nonlinear sloshing in a rectangular tank. J. Fluid Mech. 432, 167-200.
- Faraday, M., 1831. On the forms and states assumed by fluids in contact with vibrating elastic surfaces. Phil. Trans. Roy. Soc. Lond. 121(319).
- Frandsen, J.B., 2004. Sloshing motions in excited tanks. J. Comput. Phys. 196(1), 53-87. https://doi.org/10.1016/j.jcp.2003.10.031
- Grilli, S.T., Svendsen, I.A., 1990. Corner problems and global accuracy in the boundary element solution of nonlinear wave flows. Eng. Anal. Bound. Elem. 7(4), 178-195. https://doi.org/10.1016/0955-7997(90)90004-S
- Hunter, P., Pullan, A., 2001. FEM/BEM Notes. Department of Engineering Science. The University of Auckland, New Zealand.
- Kim, Y., 2001. Numerical simulation of sloshing flows with impact load. Appl. Ocean Res. 23(1), 53-62. https://doi.org/10.1016/S0141-1187(00)00021-3
- Kim, Y., 2007. Experimental and numerical analyses of sloshing flows. J. Eng. Math. 58(1), 191-210. https://doi.org/10.1007/s10665-006-9124-4
- La Rocca, M., Sciortino, G., Boniforti, M.A., 2000. A fully nonlinear model for sloshing in a rotating container. Fluid Dynam. Res. 27(1), 23. https://doi.org/10.1016/S0169-5983(99)00039-8
- Lee, S.J., Kim, M.H., Lee, D.H., Kim, J.W., Kim, Y.H., 2007. The effects of LNG-tank sloshing on the global motions of LNG carriers. Ocean Eng. 34(1), 10-20. https://doi.org/10.1016/j.oceaneng.2006.02.007
- Liu, D., Lin, P., 2008. A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys. 227(8), 3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006
- Malenica, S., Zalar, M., Chen, X.B., 2003. Dynamic Coupling of Seakeeping and Sloshing. In 13th International Offshore and Polar Engineering Conference. ISOPE, Honolulu, HI, pp. 25-30.
- Nakayama, T., Washizu, K., 1980. Nonlinear analysis of liquid motion in a container subjected to forced pitching oscillation. Int. J. Numer. Meth. Eng. 15(8), 1207-1220. https://doi.org/10.1002/nme.1620150808
- Nakayama, T., Washizu, K., 1981. The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems. Int. J. Numer. Meth. Eng. 17(11), 1631-1646. https://doi.org/10.1002/nme.1620171105
- Ning, D.Z., Song, W.H., Liu, Y.L., Teng, B., 2012. A boundary element investigation of liquid sloshing in coupled horizontal and vertical excitation. J. Appl. Math. 2012.
- Ning, D.Z., Teng, B., Zhao, H.T., Hao, C.L., 2010. A comparison of two methods for calculating solid angle coefficients in a biem numerical wave tank. Eng. Anal. Bound. Elem. 34(1), 92-96. https://doi.org/10.1016/j.enganabound.2009.06.009
- Ransau, S.R., Hansen, E.W., 2006. Numerical simulations of sloshing in rectangular tanks. In: 25th International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, pp. 675-682.
- Rognebakke, O.F., Faltinsen, O.M., 2003. Coupling of sloshing and ship motions. J. Ship Res. 47(3), 208-221.
- Saghi, H., Ketabdari, M.J., 2012. Numerical simulation of sloshing in rectangular storage tank using coupled FEM-BEM. J. Mar. Sci. Appl. 11(4), 417-426. https://doi.org/10.1007/s11804-012-1151-0
- Sriram, V., Sannasiraj, S.A., Sundar, V., 2006. Numerical simulation of 2D sloshing waves due to horizontal and vertical random excitation. Appl. Ocean Res. 28(1), 19-32. https://doi.org/10.1016/j.apor.2006.01.002
- Stephen, J.J., Sannasiraj, S.A., Sundar, V., 2016. Numerical simulation of sloshing in a rectangular tank under combined horizontal, vertical and rotational oscillations. Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. 230(1), 95-113. https://doi.org/10.1177/1475090214533512
- Takahara, H., Kimura, K., 2012. Frequency response of sloshing in an annular cylindrical tank subjected to pitching excitation. J. Sound Vib. 331(13), 3199-3212. https://doi.org/10.1016/j.jsv.2012.02.023
- Tanizawa, K., 1995. A nonlinear simulation method of 3-d body motions in waves: formulation with the acceleration potential. In: 10th Workshop on Water Waves and Floating Bodies, Oxford.
- Teng, B., Gou, Y., Ning, D.Z., 2006. A higher order BEM for wave-current action on structures-Direct computation of free-term coefficient and CPV integrals. China Ocean Eng. 20(3), 395-410.
- Wang, C.Z., Khoo, B.C., 2005. Finite element analysis of two-dimensional nonlinear sloshing problems in random excitations. Ocean Eng. 32(2), 107-133. https://doi.org/10.1016/j.oceaneng.2004.08.001
- Wu, G.X., 2007. Second-order resonance of sloshing in a tank. Ocean Eng. 34(17), 2345-2349. https://doi.org/10.1016/j.oceaneng.2007.05.004
- Wu, G.X., Ma, Q.W., Taylor, R.E., 1998. Numerical simulation of sloshing waves in a 3D tank based on a finite element method. Appl. Ocean Res. 20(6), 337-355. https://doi.org/10.1016/S0141-1187(98)00030-3
- Zhang, C., 2016. Nonlinear simulation of resonant sloshing in wedged tanks using boundary element method. Eng. Anal. Bound. Elem. 69, 1-20. https://doi.org/10.1016/j.enganabound.2016.04.006
- Zhang, C., Li, Y., Meng, Q., 2015. Fully nonlinear analysis of second-order sloshing resonance in a three-dimensional tank. Comput. Fluid 116, 88-104. https://doi.org/10.1016/j.compfluid.2015.04.016
- Zhao, W.H., Hu, Z.Q., Yang, J.M., 2011. Investigation on sloshing effects of tank liquid on the FLNG vessel responses in frequency domain. J. Ship Mech. 3, 227-237.
- Zhao, W.H., Yang, J.M., Hu, Z.Q., 2013. Effects of sloshing on the global motion responses of FLNG. Ships Offshore Struct. 8(2), 111-122. https://doi.org/10.1080/17445302.2012.691272
- Zhao, W., Yang, J., Hu, Z., Tao, L., 2014. Coupled analysis of nonlinear sloshing and ship motions. Appl. Ocean Res. 47, 85-97. https://doi.org/10.1016/j.apor.2014.04.001
피인용 문헌
- A Comparative Study on Violent Sloshing with Complex Baffles Using the ISPH Method vol.8, pp.6, 2018, https://doi.org/10.3390/app8060904
- Observation of alternately localized Faraday waves in a narrow tank vol.4, pp.1, 2019, https://doi.org/10.1103/physrevfluids.4.014807
- Development of a coupled numerical model for the interaction between transient fluid slosh and tank wagon vibration vol.233, pp.3, 2018, https://doi.org/10.1177/1464419318809616
- Study on liquid sloshing characteristics of a swaying rectangular tank with a rolling baffle vol.119, pp.1, 2018, https://doi.org/10.1007/s10665-019-10017-7
- Developing New Numerical Modeling for Sloshing Behavior in Two-Dimensional Tanks Based on Nonlinear Finite-Element Method vol.145, pp.12, 2018, https://doi.org/10.1061/(asce)em.1943-7889.0001686
- Assessment of breaking waves and liquid sloshing impact vol.100, pp.3, 2018, https://doi.org/10.1007/s11071-020-05605-7
- Hunting stability analysis of partially filled tank wagon on curved track using coupled CFD-MBD method vol.50, pp.1, 2018, https://doi.org/10.1007/s11044-019-09715-y
- Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method vol.13, pp.None, 2021, https://doi.org/10.1016/j.ijnaoe.2021.08.005
- Motion Stability of Fire Ladder Truck Under Braking Process Working Conditions vol.57, pp.1, 2018, https://doi.org/10.1007/s10694-020-00994-y
- Case Study on Combination Resonance of Liquid Sloshing Under Multiple Excitations vol.9, pp.7, 2018, https://doi.org/10.1007/s42417-021-00321-x
- Liquid vibrations in cylindrical tanks with flexible membranes vol.33, pp.8, 2018, https://doi.org/10.1016/j.jksus.2021.101589