• Title/Summary/Keyword: slope variation

Search Result 551, Processing Time 0.026 seconds

A Study on the Slope Analysis of Weathered Limestone Soils during Rainfalls (강우 시 석회암 풍화토 사면의 안정해석에 관한 연구)

  • Kim Jong-Ryeol;Kang Seung-Goo;Kang Hee-Bog;Park Seung-Kyun;Park Chol-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • A set of soil samples were picked up from a failed slope formed by rainfall in limestone zone in Jangseong-gun, Jeonnam, Korea, to find out its physical and mechanical characteristics for this study, and variation of safety factor depending on slope inclination was defined by analysing slope stability affected by rainfall. Decomposed limestone soil in the research area is composed of quartz, orthoclase, gibbsite, geothite, etc., with specific gravity of 2.73, and this soil is included in SC by unified soil classification system. Calcium ingredient decreased remarkably during weathering at its mother rock. Coefficient of permeability is 2.56×10/sup -4/ cm/ sec, similar to its value of silty clay. Cohesion decreases remarkably from 3.0 t/ ㎡ to 0.72 t/ ㎡, and Φ value of internal friction angle tends to decrease as it turns to be saturated soil from partial saturated soil in the shear test. To analyze slope stability affected by rainfall, it is reasonable to seek seepage depth with reference to rainfall* intensity. In the slope stability analysis, when the seepage depth is the larger, its safety factor is the less, which makes the slope unstable. Comparing with minimum safety factor, 1.5 of cut slope in consideration of the seep-age line, safety factor is found to be satisfactory only when inclination of cut slope of decomposed limestone soil is more than 1:1.2 slope at least considering rainfall. It is also found that decrease of cohesion has great effect on decline of safety factor of slope while partial saturated soil turns to be saturated soil.

A Study on the Reduction of the High temperature misfiring in AC PDP (AC PDP의 고온오방전 개선에 관한 연구)

  • Park, Cha-Soo;Choi, Joon-Young;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-June;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1755-1758
    • /
    • 2004
  • Misfiring is often observed during the high temperature quality assurancetest of plasma display panel. This limits the productivity of PDP industry. In this paper, experimental observations on the misfiring at high panel temperature have been performed through time dependent discharge light output and static margin measurement. For the high temperature condition, firing voltage increment is found in both surface and facing discharges. This in turn increases lime lag in address discharge, and results m increment of misfiring probability. In order to reduce this kind of misfiring, a new method that applies automatically different slope of ramp erasing pulse on the common electrode according to temperature variation is proposed. The experimental results show that controlling the slope of ramp erasing pulse is quite effective for compensating temperature-dependent variation of reset and address discharge.

  • PDF

Compensation of Addressing Time at High Temperature in ac PDP.

  • Choi, Joon-Young;An, Jung-Soo;Kim, Hun-Hee;Lee, Ho-Jun;Lee, Hea-Jun;Kim, Dong-Hyun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.164-170
    • /
    • 2004
  • Misfiring is often observed during the high temperature quality assurance test of plasma display panel. This limits the productivity of PDP industry. In this paper, experimental observations on the misfiring at high panel temperature have been performed through time dependent discharge light output and static margin measurement. For the high temperature condition, firing voltage increment is found in both surface and facing discharges. This in turn increases time lag in address discharge, and results in increment of misfiring probability. In order to reduce this kind of misfiring, a new method that applies automatically different slope of ramp erasing pulse on the common electrode according to temperature variation is proposed. The experimental results show that controlling the slope of ramp erasing pulse is quite effective for compensating temperature-dependent variation of reset and address discharge.

  • PDF

New Method for MPPT Control of Photovoltaic System (태양광전시스템의 최대출력점추적제어를 위한 새로운 방식)

  • Chung, C.B.;Jho, J.H.;Jho, J.M.;Jeon, K.Y.;Lee, S.H.;Oh, B.H.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1256-1258
    • /
    • 2003
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuate on the variations of insolation, temperature and loads. To obtain maximum power from solar cell, photovoltaic system cell power system usually requires maximum power point tracking controller. This paper propose Maximum power point tracking method using zero slope of differential value of maximum power. The power compare method traces to maximum power point rapidly but oscillate on the maximum power point largely, when quantity insolation variation is big. The power compare method is traces to maximum power point slowly but oscillate maximum point on the maximum power point smally, when quantity insolation variation is small. To solve two problem of the power compare method, designed zero slope of differential value of maximum power.

  • PDF

Analysis on the Rainfall Triggered Slope Failure with a Variation of Soil Layer Thickness: Flume Tests (강우로 인한 조립토 사면에서의 토층 두께 변화에 따른 사면의 활동 분석: 실내 모형실험)

  • SaGong, Myung;Yoo, Jea-Ho;Lee, Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.91-103
    • /
    • 2009
  • Slope failure depends upon the climatic features related to related rainfall, structural geology and geomorphological features as well as the variation of the mechanical behaviors of soil constituting a slope. In this paper, among many variables, effects of soil layer thickness on the slope failure process, and variations of matric suction and volumetric water content were observed. When the soil layer is relatively thick, the descending wetting front decreases matric suction and the observed matric suction reaches to "0" value. When the wetting front reaches to the impermeable boundary, the bottom surface of steel soil box, ascending wetting front was observed. This observation can be postulated to be the effects of various sizes of pores. When macro size pores exist, the capillary effects can be reduced and infilling of pore will be limited. The partially filled pores would be filled with water during the ascending of the wetting front, which bounces from the impermeable boundary. This assumption has been assured from the observation of variation of the volumetric water contents at different depth. When the soil layer is thick (thickness = 20 cm), for granular material, erosion is a cause triggering the slope failure. It has been found that the initiation of erosion occurs when the top soil is fully saturated. Meanwhile, when the soil layer is shallow (thickness = 10 cm), slope slides as en mass. The slope failure for this condition occurs when the wetting front reaches to the interface between the soil layer and steel soil box. As the wetting front approaches to the bottom of soil layer, reduction of shear resistance along the boundary and increase of the unit weight due to the infiltration occur and these produce complex effects on the slope failure processes.

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Seung;Jeon, Min-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.619-627
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. We also considered the increase of water depth at the entrance channel by dredging work up to 15 meters depth in order to see the dredging effect. Among several model analyses, the nonlinear and breaking wave conditions are showed the most applicable results. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Sung;Jeon, Min-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.217-225
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

  • PDF

An Experimental Study on the Depth Variation of Water Flow on Steep Open Channel with Constant Width (一定幅 急傾斜 開水路上을 流動하는 물의 깊이 變化에 관한 實驗的 硏究)

  • 박이동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.86-95
    • /
    • 1986
  • A study on film water flow on steep open channel has been seldom found up to date. Therefore, this paper dealed with the depth variation of film thickness of water (city supply normal water) flowing on steep open channel. For this purpose, Experimental apparatus (made of a normal glass with 160cm of length and 15cm of width) was made and the depths of the water flowing on the channel were measured experimentally, changing the channel slope angle from 30 to 80 degree (5 steps) and the flow rate from 0.25 to 10CPM (11 steps). The results obtained, some characteristics of the film flow on the channel are as follows. (1) When thin film water flowed on steep open channel, the depths of flow tended to increase after decreasing and was kept nearly constant in its downstream in case of laminar and transitional flow region. The turining point of the depths of flow from decrease to increase tended to move downward with the increase of Reynolds number. In turbulent flow region, the depths of flow showed reapid decrease in its upper stream, gradual decrease in its midstream and were kept nearly constant in its downstream. (2) While the differences between the depths of flow along the channel slope got small in its upper stream and got large in its downstream in case of laminar flow region, they got very large in its upper stream and were kept nearly constant in its downstream in case of transitional and turbulent flow region. And the move flow rate increases, the more the differences between the depths of flow along the channel slope got large in its upper stream.

Mechanical Design and Development of a Digital Tongue Imaging System Equipped with LEDs (LED 광원을 이용한 디지털 혀 영상 촬영장치의 기구설계와 개발)

  • Nam, Dong-Hyun;Kim, Ji-Hye;Lee, Sang-Suk
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • Objectives: The aims of this study are to design a optimized mechanical structure of digital tongue imaging system (DTIS) equipped with LEDs in aspects of object distance and camera angle of coverage. Methods and Results: We tried to find optimized object distance while recording a rectangular object of common tongue size. In case object distance is 22 cm or less, edge of the rectangle was not taken beyond the shooting range. In contrast, if object distance is 40 cm or more, the rectangle image was too small. Therefore when considering the variation of subjects, we selected distance of 35-40 cm as appropriate object distance for the DTIS. We also tried to find optimized angle between camera view axis and horizontal line. We photographed from the side of the face of 7 adults with exposed tongue. We drew an exposed tongue lines to connect the tongue tip points and the tongue root points by using the photos acquired from the side faces. And then we calculated the tongue exposure angles between the vertical line and the exposed tongue lines. Mean tongue exposure angle was $28.3^{\circ}$ when tongue was lightly exposed and $13.3^{\circ}$ when maximally. So we determined $73^{\circ}$ as appropriate slope angle of part in contact with face of the DTIS and by considering that the standard variation was great, we designed control gears to adjust the slope of the camera view axis and to regulate the object distance. Conclusions: We designed a optimized mechanical structure in object distance and slope angle of part in contact with face of the DTIS.

3-D Analysis of Slope by Tension Wire Sensing (Tension Wire 계측을 통한 비탈면의 3차원 거동 분석)

  • Shin, Taeju;Kim, Taesoo;Hwang, Sanggoo;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2015
  • Several sensor systems are used to estimate and predict the slope behaviors, however though slope sensing systems are much up-to-dated compared to before, they are mainly focused on the hardware developing. It means the analyzing software is deficient to apply the examining slope behavior for slope stability. In real case, slope behavior shows the 3-dimensional movement and failure; however the modeling methods for 3-D behavior are more difficult and need more variables. 1-D analysis shows only the length variation, however the real slope makes the 3-D behaviors. To fix the 3-D space coordinate, three values should be determined such as length, horizontal angle and vertical angle. Therefore if the 3-D coordinate system were composed by the points considered of two directions and length, the 3-D space could be separated into horizontal plane and vertical plane. The data from DY-slope in Chungbuk province was analyzed to the developed 3-D coordinate system. It is concluded from the results of 3-D analysis, the slope is generally moving to transverse direction, also the displacements are happening to road and vertical direction at the same time. Presently, the accumulated displacement between sensing points shows small value within 4.3 cm, and the displacements of all sensing points show the similar directions and magnitudes.