• Title/Summary/Keyword: slope inclination

Search Result 147, Processing Time 0.029 seconds

A Study on the Stability Evaluation of Soil Slope according to inclination of upper Natural Slope (상부자연사면 경사에 따른 토사사면의 안정성 평가에 관한 연구)

  • Lee, Jeong-Yeob;Kim, Jin-Hwan;Lee, Jong-Hyun;Gu, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.580-585
    • /
    • 2004
  • The purpose of this study is the stability evaluation of soil slope according to inclination of upper natural slope. Upper natural slope breeds loss of slope by inflow in slope of surface water by rainfal1 and f1uctuation of amount of materials in slope through method of cutting slope according to degree of inclination. Basis of standard inclination does not consider of inclination of upper natural slope and is presented uniformly. Therefore, in this study, analyzed stability of inclination of upper natural slope through limit equilibrium analysis. Result is same as following. First, safety factor through limit equilibrium analysis is almost direct decrease when gradient of soil slope is 1:1.2, 1:1.5. However, when gradient of soil slope is 1:1.0, 1:0.7, if sinclination of upper natural slope are $20^{\circ}$, it shows tendency that decrease of safety factor becomes low rapidly. Second, when when gradient of soil slope is fixed, inclination of upper natural slope increase tendency(maximum 3.0 times) that decrease of safety factor.

  • PDF

A Stability Evaluation according to inclination of Upper Natural Slope in Soil Slope (토사사면의 상부자연사면 경사에 따른 안정성 평가)

  • Lee, Jeong-Yeob;Koo, Ho-Bon;Kim, Seung-Hyun;Kim, Seung-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.577-580
    • /
    • 2008
  • The purpose of this study is the stability evaluation of soil slope according to inclination of upper natural slope. Upper natural slope breeds loss of slope by inflow in slope of surface water by rainfall and fluctuation of amount of materials in slope through method of cutting slope according to degree of inclination. Basis of standard inclination does not consider of inclination of upper natural slope and is presented uniformly. Therefore, in this study, analyzed stability of inclination of upper natural slope through limit equilibrium analysis.

  • PDF

A Study on the effect of slope inclination and rainfall in current cut soil slope design criteria (국내 절토 비탈면 설계기준 적용시 사면경사와 강우조건의 영향 연구)

  • La, You-Sung;Kim, Bum-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1264-1270
    • /
    • 2010
  • In this study, the effects of slope inclination and rainfall on weathered soil slope stability were investigated for current cut soil slope design criteria. A series of slope stability analysis was performed on the slopes with the same height (5m), but different inclinations (1:0.8, 1:1, 1:1.2, 1:1.5, 1:2). Seepage analysis was also conducted to examine the rainfall effects directly and compare the combined seepage and slope stability analysis results with the slope stability analysis results for rainy season from the current cut soil slope design criteria. Typical properties for weathered soils were used in both the slope and seepage analysis. The analysis results showed that, for the slopes much steeper than the standard slopes, the factor of safety criteria were satisfied. Therefore, it appears that the slope designs by current cut soil slope design criteria lead to conservative results.

  • PDF

A Study on Reinforcement for Slope Stability of Gentle Inclination Slope Collapse Occurrence Area (완경사 사면붕괴 지역의 안전성 보강대책 연구)

  • 이승호;황영철;조성민;노흥제;이은동
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.83-91
    • /
    • 2003
  • Always slope according to construct road exist danger because of environment unstability factor in slope, Since this research an inclination of slope is gentle slope (1:1.5∼1:9.0) but falling happened by conduct of continuous ground movement. And this study considered more economical and efficient reinforcement method for slope stability. The various reinforcement methods are applied to execute examination of slope stability. Applied reinforcement methods satisfied safety factor And this research region is performing continuous measurement about ground movements and displacements.

  • PDF

Change of Slope Stability due to Slope Inclination and Surface Conditions (사면경사와 표면 조건에 따른 사면안정성 해석)

  • Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.5-11
    • /
    • 2015
  • Slope stability is affected by duration of precipitation, probable rainfall intensity, unsaturated soil property, and soil strength. The recent analyses of slope stability tend to include unsaturated analysis based on infiltration properties of soil, while researches of unsaturated soil slope tend to include the analysis of deformation and stress distribution of soil over time. However, infiltration property of unsaturated soil slope depends not only on intensity or duration of precipitation, but also on relief and surface condition, which is not considered in status quo. This research uses hydrologic model parameters of soil in order to consider effects of inclination on filtration, and carries out analysis of unsaturated soil slope to confirm the effects according to slope inclination and surface condition. In conclusion, using slope stability analysis, the need to consider infiltration rate according to inclination and surface condition was confirmed even under the same precipitation conditions.

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

Characteristics of Slope Failure induced by Typhoon and an Examination of a Standard Slope Inclination for Design (태풍에 의한 절개면 붕괴특성 연구 및 경사도 설계기준 검토)

  • Koo, Ho-Bon;Baek, Yong;Kwon, O-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.117-122
    • /
    • 2003
  • Every year in domestic slope failure caused by rainfall is happening frequently. Specially, causable failure accident by localized downpour accompanied when summer rainy season period and produces typhoon gets damage of large scale human life and property. Failure happened at slope of 121 places ranged whole country national highway by No.15 typhoon Rusa that strike whole country during 3 days from August 30, 2002. Slope failure that happen by typhoon are judged for major cause to effect of ground saturation and surface water by localized downpour. In this research, failure characteristic was analyzed to target 20 places attaining site investigation among failure slope. As a result, erosions by surface water was construed for major cause of failure and judged for direct relation in failure slope weathering and topography Also, result that analyze inclination of failure part, in the case of ripping rock, inclination of failure side is forming Incline of the lowest 40$^{\circ}$, because surface failure of depth 4m on or so scale happened, it is require that regulating plan gently design standard inclination of weathered rock and soil layer And it is considered that desirable preparation of design standard about measure that help smooth drainage of surface water and can restrain percolation in ground to reduce failure damage by rainfall.

  • PDF

Analytical Verification of the Standard Inclinations of Slope in the Design Criteria (설계기준에 제시된 사면 표준경사에 대한 해석적 검증)

  • Lee, Seung-Hyun;Kim, Byung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5342-5348
    • /
    • 2014
  • Slope stability analyses were conducted to investigate the limitations of application of the standard inclination of slope and the effects of the berm width on the slope stability. The standard slope inclination could be applied to the basic slope sections that were considered for the analyses, whereas additional slope stability analysis should be performed for the case of considering ground water. A comparison of the factors of safety between the case of installing a berm and the case of letting the grading have an equivalent section area with the case of installing the berm, the factors of safety in the case of installing a berm were greater than those for the case of allowing grading, and the differences between the factors of safety increase with increasing berm width. For all the sections considered in the analyses, the increments of the safety factor were proportional to the width of the berm and those corresponding to the embankment slope and cut slope with a berm width of 7m were 34.5% and 48%, respectively.

Evaluating the effects of the inclinations of rock blocks on the stability of bimrock slopes

  • Khorasani, Emad;Amini, Mehdi;Hossaini, Mohammad Farouq;Medley, Edmund
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.279-285
    • /
    • 2019
  • The process of slope stability analysis is one of the most important stages in design of some civil and mining projects. Bimslopes are made from bimrocks (block-in-matrix rocks) where rocky blocks are distributed in a bonded matrix of finer texture. These kind of slopes are often seen in weathered and near-surface depths. Previous studies have shown that VBP (Volumetric Block Proportion) is one of the most significant factors affecting bimrocks strength and consequently the stability of bimslopes. In this paper, the influence of block inclinations on bimslope stability have been investigated. For this purpose, 180 theoretical models have been made with various VBPs, all of them have a specified block size distribution. These bimslopes contain blocks with differing dips relative the slope inclination. Also for each kind of block inclination, 10 different blocks arrangements have been modeled. The Finite Element Method (FEM) was used to analysis the stability of these bimslopes models. The results showed the inclination of blocks has a strong impact on the Safety Factor and stability of bimslopes. When the difference in angle of dip of blocks relative to the slope angle is maximum, the Safety Factor of bimslopes tends to be a maximum compared with the matrix-only state. Furthermore, with increasing VBP of bimslopes stability increases. The graphs obtained from this study could be used for preliminary guidance in the projects design with bimslopes.

The Reinforcement Method and Stability Analysis of Cut Slopes (절토사면의 안정해석과 보강방법)

  • 지인택;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.112-121
    • /
    • 1997
  • The aim of this study was to analyze the slope stability relating to the failure of cut slopes and the characteristics of stress-strain relations obtained by limit equilibrium method, finite element method, and stereographic projection method for the reinforced cut slopes. The following conclusions were made : 1.To use stereographic projection method led to little possibility to take the toppling and wedge failure while to use the other methods led to the failure. It was recommended to reduce the slope inclination from 1:1 to 1: 1.5~1 :1.8 and adopt coir mesh method to protect the slope surface. position with the horizontal displacement after final excavation moved to the excavation base. The maximum shear strain values concentrated at the excavation base indicated the possibility to induce the local failure. 3. It was recommended that the slope inclination for blast rock with the slope height larger than l0m was 1: 0.5, 1:1, and 1: 1~1 :1.5 for hard rocks, soft and ordinary rocks, and ripping and soils, respectively. 4. Berm width criteria for blast rock with the slope height larger than l0m were recommended as follow : 2~3m per 20m slope height for hard rocks, 1 ~2m per l0m slope height for soft and ordinary rocks, 1 ~ l.5m per 5m slope height for ripping and soils.

  • PDF