• Title/Summary/Keyword: slab thickness

Search Result 367, Processing Time 0.029 seconds

Lateral stiffness of reinforced concrete flat plates with steps under seismic loads

  • Kim, Sanghee;Kang, Thomas H.K.;Kim, Jae-Yo;Park, Hong-Gun
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.891-906
    • /
    • 2014
  • The purpose of this study is to propose a modification factor to reflect the lateral stiffness modification when a step is located in flat plates. Reinforced concrete slabs with steps have different structural characteristics that are demonstrated by a series of structural experiment and nonlinear analyses. The corner at the step is weak and flexible, and the associated rotational stiffness degradation at the corner of the step is identified through analyses of 6 types of models using a nonlinear finite element program. Then a systematic analysis of stiffness changes is performed using a linear finite element procedure along with rotational springs. The lateral stiffness of reinforced concrete flat plates with steps is mainly affected by the step length, location, thickness and height. Therefore, a single modification factor for each of these variables is obtained, while other variables are constrained. When multiple variables are considered, each single modification factor is multiplied by the other. Such a method is verified by a comparative analysis. Finally, a complex modification factor can be applied to the existing effective slab width.

Analytical Study on Fire Resistance Predictions of Prestressed Concrete Slabs (프리스트레스트 콘크리트 슬래브의 내화성능 예측에 대한 해석적 연구)

  • Min, Jeong-Ki;Park, Min Jae;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • In fire design for floors, the three criteria of stability, integrity and insulation are required for the specified fire resistance duration. Among these, stability is not easy to confirm. For solid prestressed concrete slabs of uniform thickness, Eurocode 2 provides tabulated data and specifies an axis distance to the centroid of strands to achieve particular fire resistance ratings, but it is not clear if this data can be used for a wide range of different prestressed slab profiles. In order to verify the current code-fire ratings for precast prestressed slabs, both simple and advanced calculation methods are investigated. This paper examines the use of calculation methods, accounting for the real behaviour of unprotected simply supported prestressed concrete slabs exposed to the standard ISO 834 fire. The calculated fire resistance of each prestressed concrete slab is compared with tabulated data in Eurocode part 1.2, with detailed discussion.

Virtual Simulation of Temperature Distribution throughout Beef Packages with Time-temperature Indicator (TTI) Labels

  • Kim, Min-Jung;Min, Sang-Gi;Lee, Seung Ju
    • Food Science of Animal Resources
    • /
    • v.33 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • If the time-temperature indicator (TTI) experienced a different temperature than the accompanied packaged food, influenced by heat transfer between the TTI, package, and ambient air, TTI would incorrectly predict the food quality changes with temperature. Temperature distributions of a finite slab with different sizes, representing beef packaged with TTI, were estimated by the finite element method (FEM). The thermal properties of the beef and TTI, such as heat capacity, density, and heat conductivity, were estimated from the relevant equations using their chemical compositions. The FEM simulations were performed for three cases: different locations of TTIs on the beef, different thicknesses of beef, and non-isothermal conditions of ambient air. The TTIs were mounted in four different locations on the beef. There was little difference in temperature between four locations of the TTI on the package surface. As the thickness of the slab increased, the temperature of the TTI changed faster, followed by the corner surface, as well as middle and bottom parts, indicating the possible error for temperature agreement between the TTI and the slab. Consequently, it was found that any place on the package could be selected for TTI attachment, but the package size should carefully be determined within a tolerable error of temperature.

Behavior of composite CFST beam-steel column joints

  • Eom, Soon-Sub;Vu, Quang-Viet;Choi, Ji-Hun;Papazafeiropoulos, George;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.583-594
    • /
    • 2019
  • In recent years, composite concrete-filled steel tubular (CFST) members have been widely utilized in framed building structures like beams, columns, and beam-columns since they have significant advantages such as reducing construction time, improving the seismic performance, and possessing high ductility, strength, and energy absorbing capacity. This paper presents a new composite joint - the composite CFST beam-column joint in which the CFST member is used as the beam. The main components of the proposed composite joint are steel H-beams, CFST beams welded with the steel H-column, and a reinforced concrete slab. The steel H-beams and CFST beams are connected with the concrete slab using shear connectors to ensure composite action between them. The structural performance of the proposed composite joint was evaluated through an experimental investigation. A three-dimensional (3D) finite element (FE) model was developed to simulate this composite joint using the ABAQUS/Explicit software, and the accuracy of the FE model was verified with the relevant experimental results. In addition, a number of parametric studies were made to examine the effects of the steel box beam thickness, concrete compressive strength, steel yield strength, and reinforcement ratio in the concrete slab on the proposed joint performance.

Number of Scatterings in Random Walks

  • Kwang-Il Seon;Hyung-Joe Kwon;Hee-Gyeong Kim;Hyeon Jeong Youn
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.287-292
    • /
    • 2023
  • This paper investigates the number of scatterings a photon undergoes in random walks before escaping from a medium. The number of scatterings in random walk processes is commonly approximated as τ + τ2 in the literature, where τ is the optical thickness measured from the center of the medium. However, it is found that this formula is not accurate. In this study, analytical solutions in sphere and slab geometries are derived for both optically thin and optically thick limits, assuming isotropic scattering. These solutions are verified using Monte Carlo simulations. In the optically thick limit, the number of scatterings is found to be 0.5 τ2 and 1.5 τ2 in a sphere and slab, respectively. In the optically thin limit, the number of scatterings is ≈ τ in a sphere and ≈ τ (1 - γ - ln τ + τ) in a slab, where γ ≃ 0.57722 is the Euler-Mascheroni constant. Additionally, we present approximate formulas that reasonably reproduce the simulation results well in intermediate optical depths. These results are applicable to scattering processes that exhibit forward and backward symmetry, including both isotropic and Thomson scattering.

Flexural performances of deep-deck plate slabs: Experimental and numerical approaches

  • Inwook Heo;Sun-Jin Han;Khaliunaa Darkhanbat;Seung-Ho Choi;Sung Bae Kim;Kang Su Kim
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.313-325
    • /
    • 2024
  • This work presents experimental and numerical investigations on the flexural performances of composite deep-deck plate slabs. Seven deep-deck plate slab specimens with topping concrete were fabricated; the height of the topping slab as well as presence and type of shear connector were set as the main variables to perform bending experiments. The flexural behaviors of the specimens and composite behaviors of the deck plate and concrete were analyzed in detail. The contributions of the deck plate to the flexural stiffness and strength of the slab were identified through finite element (FE) analysis. FE analysis was carried out using the validated FE model by considering the varying bond strengths of the deck plates and concrete, thickness of the deck plate, and types and spacings of the shear connectors. Based on the results, the degree of composite of the deep-deck plate was examined, and a flexural strength equation for the composite deck plate slabs was proposed.

Performance of Hybrid Laser Diodes Consisting of Silicon Slab and InP/InGaAsP Deep-Ridge Waveguides

  • Leem, Young-Ahn;Kim, Ki-Soo;Song, Jung-Ho;Kwon, O-Kyun;Kim, Gyung-Ock
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.339-341
    • /
    • 2010
  • The fundamental transverse mode lasing of a hybrid laser diode is a prerequisite for efficient coupling to a single-mode silicon waveguide, which is necessary for a wavelength-division multiplexing silicon interconnection. We investigate the lasing mode profile for a hybrid laser diode consisting of silicon slab and InP/InGaAsP deep ridge waveguides. When the thickness of the top silicon is 220 nm, the fundamental transverse mode is lasing in spite of the wide waveguide width of $3.7{\mu}m$. The threshold current is 40 mA, and the maximum output power is 5 mW under CW current operation. In the case of a thick top silicon layer (1 ${\mu}m$), the higher modes are lasing. There is no significant difference in the thermal resistance of the two devices.

Experimental Construction of Post-Tensioned Concrete Pavement (포스트텐션 콘크리트 포장의 시험시공)

  • Kim, Dong-Ho;Lee, Hyeon-Ho;Bae, Jong-Oh;Kim, Ki-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.135-136
    • /
    • 2009
  • Experimental Post-Tensioned Concrete Pavement(PTCP) was constructed on October 13, 2008 for the first time in Korea. The length of PTCP main slab is 120m and the slab thickness is 15cm, while the width is 8.2m. From this study, design, analysis, and construction for PTCP are experienced and many data were obtained. The primary results of this study was also summarized.

  • PDF

Finite strip method in probabilistic fatigue analysis of steel bridges

  • Li, W.C.;Cheung, M.S.
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.429-440
    • /
    • 2002
  • A finite strip method is developed for fatigue reliability analysis of steel highway bridges. Flat shell strips are employed to model concrete slab and steel girders, while a connection strip is formed using penalty function method to take into account eccentricity of girder top flange. At each sampling point with given slab thickness and modulus ratio, a finite strip analysis of the bridge under fatigue truck is performed to calculate stress ranges at fatigue-prone detail, and fatigue failure probability is evaluated following the AASHTO approach or the LEFM approach. After the failure probability is integrated over all sampling points, fatigue reliability of the bridge is determined.

A Study for Stiffness Improvement Method with Use of Filled Concrete in Continued Steel Box Girder Bridge (강상자형 연속교에서 콘크리트재를 이용한 부모멘트 구간의 강성향상공법)

  • 구민세;이호경
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.69-78
    • /
    • 1999
  • The stiffness of slab concrete section is not considered as effective in the existing method of construction for continued steel box girder bridge. Using lifting system and filled concrete, it is possible to make stiffness of slab concrete section effective and improve stiffness of negative moment section. It was proved that the stress of upper flange in positive moment is significantly lower than case of existing method through the stress comparison. This stress difference made possible to rearrange flange thickness and as the result of this rearrangement, the amount of steel and height of girder can be reduced up to 13.23% and 11.5%.

  • PDF