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Abstract
This paper investigates the number of scatterings a photon undergoes in random walks before escaping from a medium. The
number of scatterings in random walk processes is commonly approximated as τ + τ2 in the literature, where τ is the optical
thickness measured from the center of the medium. However, it is found that this formula is not accurate. In this study, analytical
solutions in sphere and slab geometries are derived for both optically thin and optically thick limits, assuming isotropic scattering.
These solutions are verified using Monte Carlo simulations. In the optically thick limit, the number of scatterings is found to be
0.5 τ2 and 1.5 τ2 in a sphere and slab, respectively. In the optically thin limit, the number of scatterings is ≈ τ in a sphere and
≈ τ(1 − γ − ln τ + τ) in a slab, where γ ≃ 0.57722 is the Euler-Mascheroni constant. Additionally, we present approximate
formulas that reasonably reproduce the simulation results well in intermediate optical depths. These results are applicable to
scattering processes that exhibit forward and backward symmetry, including both isotropic and Thomson scattering.

Keywords: radiative transfer — scattering — methods:analytical

1. Introduction

Scattering of radiation through a medium with a large opti-
cal depth occurs in various astrophysical contexts. The most
frequently encountered scattering mechanisms include Thom-
son scattering of photons by non-relativistic free electrons in
ionized gaseous nebulae and resonance scattering of Lyα and
Mg ii photons in the neutral interstellar and circumgalactic
medium. In Thomson scattering, the scattering cross sec-
tion is nearly independent of the incident photon’s frequency.
In earlier studies, the Lyα radiative transfer (RT) problem was
also investigated under the assumption that the resonance cross
section could be approximated as that at the line center, in-
dependent of the photon frequency (e.g., Osterbrock 1962),
although, in reality, it is not.

The diffusion process of Thomson-scattered line radia-
tion in a slab geometry, particularly in the context of polar-
ization, was investigated in Chandrasekhar (1960) and Phillips
& Meszaros (1986). The polarization of Thomson-scattered
radiation in an oblate spheroidal medium was studied by An-
gel (1969). The wavelength dependence of polarization of a
Thomson-scattered emission line was explored in Lee (1999)
and Kim et al. (2007). A Monte Carlo study, conducted by
Choe & Lee (2023), investigated the diffusion process of
Thomson-scattered line radiation in both real space and fre-
quency space. Monte Carlo Lyα RT has also been extensively

studied in many different astrophysical contexts (Ahn et al.
2000; Chang et al. 2023; Gronke & Dĳkstra 2014; Seon &
Kim 2020; Seon et al. 2022; Song et al. 2020; Verhamme et al.
2006; Yan et al. 2022; Zheng & Miralda-Escudé 2002). Re-
cently, a Monte Carlo RT simulation of the Mg iiλλ2796, 2803
doublet line was also performed to investigate the doublet flux
ratio (Seon 2023).

These diffusion processes lead to the broadening of emis-
sion lines, with their strength and width determined by the
number of scatterings experienced by photons and the gas tem-
perature. Therefore, one of the most critical factors in under-
standing line formation processes is the number of scatterings.
Osterbrock (1962) applied the probability methods from the
random walk process described in Chandrasekhar (1943) to
Lyα photons. They found that the mean number of scatterings
required for a photon to diffuse out would be≈ τ20 in a medium
with a very large optical depth, denoted as τ0. A similar ar-
gument was developed by Rybicki & Lightman (1986) for a
random-walk process, demonstrating that the mean number of
scatterings undergone by a photon before escaping an optically
thick medium is ≈ τ20 .

In the Lyα RT process, the number of scatterings in the
limit of large optical depth was analytically derived for a slab
and a sphere by Harrington (1973) and Seon & Kim (2020),
respectively. Seon & Kim (2020) validated the analytical so-
lutions through Monte Carlo simulations, covering for a wide
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Figure 1. Geometries adopted in this study: (a) sphere and (b) slab. The physical size (L) of the system is defined as the radius for the sphere
and the height from the center for the slab geometry. The slab is infinitely extended along the x and y directions. In the slab geometry, the polar
angle θi for the ith displacement vector is measured from the positive z direction.

range of optical depths and gas temperatures in both slab and
sphere geometries. However, surprisingly, to the best of our
knowledge, we found no literature validating the approximate
formula of Rybicki & Lightman (1986) for the number of scat-
terings in the simple random walk process, where the scattering
cross section is independent of the photon frequency.

This absence of validation for the approximate formula
concerning the number of scatterings in random walks has
motivated the present study. We soon recognized that the for-
mula is not correct and, consequently, derived new analytical
formulas for both a sphere and a slab. These results were fur-
ther verified through Monte Carlo simulations. The analytical
approximations are derived in Section 2. Section 3 details the
Monte Carlo simulation methods and results. The summary
and discussion are found in Section 4.

2. Analytical Approximations
The approach in this study is similar to that adopted in Rybicki
& Lightman (1986). However, we have derived the approxi-
mate equations accurately by carefully handling the probability
distribution function for both sphere and slab geometries.

The scattering region is assumed to be a sphere or a slab,
where photons are isotropically emitted from the center and
scattering particles are uniformly distributed inside the region.
The optical thickness of a medium is given by τ0 = nσ L,
where n, σ, and L represent the particle number density, cross
section, and the radius of the sphere (or the height of the slab),
respectively. The geometries and the definition of the system
size L are illustrated in Figure 1. The optical thickness can
be expressed as τ0 = L/ℓ in terms of the mean free path,
ℓ = 1/(nσ). In the following, we note that the probability
of being scattered within an optical depth interval dτ at the
optical depth τ is P (τ) dτ = e−τ dτ (0 ≤ τ ≤ ∞).

2.1. Sphere
In an optically thin sphere, photons will be scattered at most
only once. Consequently, the mean number of scatterings
eventually becomes equivalent to the probability that a photon

undergoes scattering in the medium. The mean number of
scatterings is then given by the following expression:

Nscatt =

∫ τ0

0

P (τ) dτ = 1− e−τ0

≈ τ0 (τ0 ≪ 1, sphere).

(1)

For a medium of large optical thickness, photons will
be scattered multiple times. The displacement of a photon
between the (i − 1)th and ith scatterings is denoted by ri, as
illustrated in Figure 1. The net displacement of the photon
after N scatterings is then R = r1 + r2 + r3 + · · ·+ rN . The
average net displacement is obtained by squaring R and then
averaging it over all photons:

〈
R2

〉
=

N∑
i=1

〈
r2i
〉
+

N∑
i,j
i ̸=j

⟨ri · rj⟩ , (2)

where the angle brackets ⟨⟩ denote the average over all photons.
The second term in the equation involves averaging the cosines
of angles between the directions before and after scatterings. In
the summation, i and j do not necessarily denote sequentially
occurring scattering events. In the optically thick limit, this
will vanish for any scattering type with front-back symmetry,
such as isotropic, Thomson, or Rayleigh scattering. Then, only
the first term will contribute to the mean net displacement,
which will consequently become Nscatt

〈
r2
〉
, where Nscatt

and
〈
r2
〉

are the mean number of scatterings and the mean
square displacement for a single scattering event, respectively.
The mean square displacement of a single scattering event can
be calculated as follows:〈

r2
〉
=

∫ ∞

0

τ2 ℓ2 P (τ) dτ = 2 ℓ2 (3)

The photon will escape after the symetem acquiring the net dis-
placement of Nscatt

〈
r2
〉
= L2. Therefore, the mean number

of scatterings undergone by photons is given by

Nscatt ≈
1

2
τ20 (τ0 ≫ 1, sphere). (4)
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Combining the above equations for optically thin and thick
cases, we obtain an approximation that might be applicable in
both optically thin and optically thick media:

N sphere
scatt ≈ τ0 +

1

2
τ20 . (5)

Our result differs from that of Rybicki & Lightman (1986)
by a factor of 2 in the optically thick limit. This difference
arises from their assumption that the path lengths between
scatterings are always constant, rather than following the prob-
ability distribution function (PDF) P (τ) = e−τ . Their result
is not self-consistent because they assumed the PDF when de-
riving the number of scatterings in the optically thin limit but
not in the optically thick limit.

2.2. Slab
In an optically thin slab, photons will escape the system when
the z component of the displacement vector expected at the
first scattering event is beyond the half height of the slab, i.e.,
when |r1 · ẑ| > L. Therefore, unlike in the spherical geometry
case, the condition for scattering depends on the polar angle
θ of the photon direction. The probability of being scattered
when a photon is emitted into a direction of µ = cos θ is
pscatt(µ) = 1 − e−τ0/|µ| because the optical thickness from
the center to the slab boundary along that direction is τ0/ |µ|.
Therefore, the mean number of scatterings can be obtained by
integrating the probability pscatt(µ) over µ, which is uniformly
distributed in the range of −1 ≤ µ ≤ 1. The resulting number
of scatterings is then given as follows:

Nscatt =
1

2

∫ 1

−1

(
1− e−τ0/|µ|

)
dµ

= 1− e−τ0 + τ0 Γ(0, τ0) (τ0 ≪ 1, slab)

(6)

Here, Γ(0, τ0) ≈ −γ − ln τ0 + τ0 + O(τ20 ) is the upper in-
complete gamma function, where γ ≃ 0.57722 is the Euler-
Mascheroni constant. It is noteworthy that the number of
scatterings for a slab is found to be higher than Nscatt ≈ τ0
obtained for a sphere. This is because the optical depth along
a direction with θ > 0 is always higher than that at θ = 0.

In the optically thick limit, we need to consider the mean
square of the z component of the net displacement, which is
given by:

〈
(R · ẑ)2

〉
=

N∑
i=1

〈
(ri · ẑ)2

〉
+

N∑
i,j
i ̸=j

⟨(ri · ẑ) (rj · ẑ)⟩

=

N∑
i=1

〈
r2i µ

2
i

〉
+

N∑
i,j
i ̸=j

⟨rirjµiµj⟩
(7)

Here, ri is the magnitude of the ith displacement ri (i.e.,
ri = |ri|), and µi = cos θi is the cosine of the polar angle
of ri, measured from the positive z-axis direction, as illus-
trated in Figure 1. The angles θi and θj are independent, and
thus the second term will vanish if the scattering is front-back

symmetric. The first term becomes Nscatt

〈
r2µ2

〉
if photons

undergo scatteringNscatt times before escaping. Here,
〈
r2µ2

〉
represents the mean squared z coordinate of the displacement
vector between scattering events. The radiation field would be
isotropic in the optically thick limit, even when the scattering
is not isotropic, if it is front-back symmetric. In that case, the
polar angle µ will be uniformly distributed, and

〈
r2µ2

〉
can be

estimated as follows:

〈
z2
〉
=

〈
r2µ2

〉
=

1

2

∫ 1

−1

∫ ∞

0

(τ ℓ)
2
µ2 e−τ dτ dµ

=
2

3
ℓ2

(8)

As a result, the mean number of scatterings can be obtained
from the condition Nscatt

〈
r2µ2

〉
= L2, as follows:

Nscatt ≈
3

2
τ20 (τ0 ≫ 1, slab) (9)

As for the spherical geometry, it is tempting to add the
equations for the optically thin and thick case. However, it was
found that the equation for the optically thin slab is applicable
only to much lower optical thickness (τ0 ≲ 5×10−2) compared
to that for a sphere. This arise because the optical thickness of a
slab along a direction parallel to thexy plane is, in fact, infinite.
The formula was also found to significantly deviate from the
simulation results at intermediate optical depths. Therefore,
instead of simply combining the formulas for optically thin and
thick limits, we made slight modifications to Equation (6) for
the optically thin case and obtained an approximate formula.
The final approximate formula is given as follows:

N slab
scatt ≈

τ0 (1− γ − ln τ0 + 5.6 τ0)

1 + τ20
+

3

2
τ20 . (10)

In the next section, we demonstrate that this adjusted formula
reproduces the simulation results fairly well.

3. Monte Carlo Simulation
In this section, we describe our Monte Carlo RT simulation
method and compare the simulation results with the analytical
approximation equations for the number of scatterings.

3.1. Simulation Methods
The Monte Carlo simulation algorithms adopted in this study
are similar to those described in Seon & Kim (2020) and Choe
& Lee (2023). Photons are traced from the center, where they
are generated, until they escape from the scattering region. The
emitting source is assumed to be monochromatic and isotropic.
The scattering cross section is assumed to be independent of
the wavelength, akin to the Thomson scattering process. The
optical depth τ traveled by a photon between scattering events
is directly proportional to the physical path length |ri|.

Simulations were performed using two different ap-
proaches: with and without adopting the first forced scattering
algorithm. In the first approach, the optical depth traveled
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Figure 2. Monte Carlo RT simulation results for the number of scatterings as a function of the optical thickness (τ0) in spherical and slab
geometries. The left panels show the results for spherical geometry, and the right panels display those for slab geometry. The upper panels
compare the number of scatterings with the analytical formulas, while the lower panels show the relative differences of the approximate formulas
from those obtained in simulations. The lower panels also display the difference between the results for Thomson scattering and isotropic
scattering. In the upper panels, the black lines with circles represent simulation results. Red solid and dashed lines denote the approximate
formulas derived in this paper and in Rybicki & Lightman (1986), respectively. In the figures, N iso

scatt and NRayleigh
scatt denote the results obtained

from Monte Carlo simulations, assuming isotropic and Thomson scattering phase functions, respectively. Napp
scatt indicates the number of

scatterings calculated using the analytic formulas derived in this work. NRL
scatt denotes the formula given by Rybicki & Lightman (1986).

by a photon before experiencing the next scattering event is
randomly chosen as follows:

τ = − ln ξ, (11)

where ξ is a uniformly distributed random number between 0
and 1. In this approach, the photon weight is always w = 1. In
the second approach, to minimize the inefficiency inherent in
simple Monte Carlo simulations in the optically thin limit, the
forced scattering algorithm is adopted for the first scattering
event for every photon (e.g., Cashwell & Everett 1959; Witt
1977; Baes et al. 2011; Seon 2023). The optical depth traveled
between scattering events is randomly chosen as follows:

τ = − ln (1− ξ w) , (12)

where ξ is a uniform random number, and w is the photon
weight. The photon weight is w = 1 − e−τmax for the first
scattering event, and w = 1 for subsequent scatterings. Here,
τmax = τ0 for a sphere, while for a slab, τmax = τ0/ |µ|
when the photon is emitted along a direction corresponding to
µ. The results obtained using both approaches were found to
agree very well. In this paper, the results obtained using the
first approach are presented.

The next scattering location from the current position r

is determined by r′ = r + τ ℓk, where k is the current prop-
agation direction vector of the photon before the scattering.
Because the scattering medium is assumed to have a constant
density in this study, distances are measured in units of the
mean free path (i.e., ℓ = 1). After determining the next scat-
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tering location, the radial distance of the photon is compared
with the radius in the case of spherical geometry or the z coor-
dinate is compared with the height of the medium in the case
of slab geometry. The comparison determines the fate of the
photon—whether it escapes the system or continues scattering.

If the photon does not escape, the next scattering prop-
agation vector k′ is chosen by sampling the scattering polar
angle ϑ and azimuthal angle φ relative to k. The scattering
angles are defined in a coordinate system formed by three unit
vectors: ez = k, ey = ẑ × k/ |ẑ× k|, and ex = ey × ez ,
provided k is not parallel to ẑ (i.e., ẑ×k ̸= 0). If k is parallel
to ẑ, the three basis vectors are chosen to be ex = x̂, ey = ŷ,
and ez = ẑ. Once the scattering angles (ϑ, φ) were sampled
according to an appropriate PDF, the next propagation vector
is obtained as follows:

k′ =
√

1− µ2 (cosφ ex + sinφ ey) + µ ez, (13)

where µ = cosϑ. The formulas given in Pozdnyakov et al.
(1983) and Seon (2009) are equivalent to the above equa-
tion, except for the definition of φ, which is modified as
φ → φ−π/2. In the case of isotropic scattering, µ = 2 ξ1−1

and φ = 2πξ2 for two independent, uniformly distributed ran-
dom numbers ξ1 and ξ2. In Thomson scattering, the scattering
angle ϑ is sampled according to the distribution function pro-
portional to 1 + cos2 ϑ. For Thomson scattering, µ is chosen
as follow for a uniform random number ξ:

Q =
[
2 (2 ξ − 1) +

√
4 (2 ξ − 1)2 + 1

]1/3
µ = Q− 1/Q

(14)

This equation is derived in Seon (2006) and further discussed
in Seon & Kim (2020).

The number of scatterings for each photon is calculated by
adding the photon weight w every time it undergoes scattering.
The process continues until the photon escapes. Finally, the
mean number of scatterings is calculated by averaging the
results obtained for a large number of photons. The number of
photons used in this study ranges from Nphotons = 104 to 108,
depending on the medium’s optical depth τ0. For optically
thin cases (τ0 ≤ 10), 107 or 108 photons were used, while a
relatively small number of photons were adopted for optically
thick cases.

3.2. Comparison with the Analytic Approximations
Figure 2 presents the results of the Monte Carlo RT simulations
conducted in a sphere (left panel) and in a slab (right panel). In
the upper panels, the results obtained by assuming the isotropic
scattering are compared with the analytical approximations,
Equations (5) and (10). Additionally, the formula proposed by
Rybicki & Lightman (1986) is also compared. In the figure,
the black lines with circles represent the simulation results,
while the red lines indicate the analytic approximations. The
red solid line represents our formula, while the red dashed
line represents the formula from Rybicki & Lightman (1986).
As can be seen in the figure, the simulation results are well

reproduced using our formulas in both a sphere and a slab. On
the contrary, in optically thick cases, the formula of Rybicki &
Lightman (1986) overpredicts the simulation for a sphere by a
factor of 2, while it underpredicts those for a slab by a factor
of 1.5. In optically thin cases, it significantly underpredicts
the results for a slab. It is also evident that, for a given optical
thickness τ0, the number of scatterings in a slab is always
higher than that in a sphere, as the optical thickness in a slab
depends on the photon propagation direction and becomes very
high in the xy plane direction.

The red lines in the lower panels present the relative dis-
crepancies between the approximate formulas and the simu-
lations where the isotropic scattering is adopted. The figures
illustrate that the approximate formulas reasonably account for
the simulation results within approximately 9% for a sphere
and 13% for a slab. It is evident that the accuracy of the ap-
proximate formula for a sphere is better than that for a slab.
This arises from the fact the optical thickness toward the di-
rection near the xy plane in a slab can be very large even in the
case of τ0 < 1.

The lower panels in Figure 2 also display the relative dif-
ferences between the simulation results for isotropic scattering
and Thomson scattering in the blue lines with crosses. Al-
though the differences are minor, one might recognize that the
Thompson scattering results yield slightly, but systematically,
larger numbers of scatterings, particularly in the case of a slab
geometry with optical thicknesses of 0.1 ≲ τ0 ≲ 1. This
minor difference is attributed to the fact that, in relatively low
optical thicknesses, the radiation field in an asymmetric slab
is less isotropic compared to the spherical symmetric case.
However, at high optical thicknesses (τ0 ≳ 1), the radiation
field rapidly become isotropic even in a slab geometry.

4. Summary and Discussion
In this paper, we derived approximate formulas [Equations (5)
and (10)] for the number of scatterings in random walk pro-
cesses, where the cross section is independent of the photon
frequency, both in a sphere and a slab. The formulas demon-
strate a good match with the Monte Carlo simulation results,
with discrepancies reaching a maximum of only approximately
9% for a sphere and 13% for a slab. The formulas apply to
both isotropic and Thomson scattering.

It is also found that, for a given optical thickness, the
number of scatterings in a slab is always higher than that in
a sphere. This is because the optical thickness of photons
propagating approximately parallel to the xy plane in the slab
can be very high.

It is noteworthy that in the optically thick limit,
the number of scatterings in Lyα RT is proportional to
τ0: Nscatt = 0.9579 τ0 for a sphere and Nscatt = 1.612 τ0
for a slab (Seon & Kim 2020). This linear dependence is sig-
nificantly different from that expected in random walks, where
the number of scatterings is proportional to τ20 . This differ-
ence arises from the diffusion in frequency that occurs in Lyα
RT, a phenomenon not present in random walks. Once the
frequency of a Lyα photon diffuses into the wings far from the
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line center, the cross section decreases dramatically, leading
to escape through a single longest ‘excursion,’ as described
by Adams (1972). Consequently, the number of scatterings
decreases markedly compared to the case of random walks.

While it is beyond the scope of this paper to investigate
line broadening in detail based on the number of scatterings, it
is reasonable to assume that, after a sufficiently large number
of scatterings, the core of an emission line profile will be well
described by a Gaussian profile, with its width approximately
proportional to the square root of the number of scatterings
(equivalently, proportional to the optical depth), owing to the
independence of the scattering cross-section on the photon
frequency. In Figure 6 of Choe & Lee (2023), the full width
at half maximum (FWHM) of the Thomson-scattered line for
τ = 10 is approximately twice as wide as that for τ = 5, con-
sistent with our expectation. Therefore, in the case of spher-
ical geometries, using the formula from Rybicki & Lightman
(1986) would predict a broader line width by a factor of

√
2

for a given optical depth (column density). Conversely, for
slab geometries, the line width is predicted to be narrower by
a factor of

√
1.5 at a fixed optical depth. In practical terms,

when analyzing observational data, their formula will suggest
a lower column density by a factor of

√
2 in spherical geom-

etry and a higher column density by a factor of
√
1.5 in slab

geometry.
In the present study, we considered uniform density me-

dia. In a plane-parallel medium, where the density depends
only on the height (|z|) from the midplane, the number of scat-
terings is expected to be independent of the detailed density
dependence on |z|. This independence arises because the inte-
gral of a density n(z) over a length ∆s = ∆z/ sin |b| along a
direction angle b, measured from the xy plane, is simply given
by

∫
n(z) dz/ sin |b|. This integral is independent of the de-

tailed functional form of n(z). Indeed, in their Lyα radiative
transfer study in media with power-law density profiles, Lao &
Smith (2020) found that emergent Lyα spectral profiles from
any density profile in slab geometry are equivalent to those
from a uniform medium with the same vertically-measured
optical depth. However, in sphere geometry, the integral of a
density profile n(r)—a function of the radius r—over a dis-
tance along a direction strongly depends on the detailed struc-
ture of the density profile along the path. In the study by Lao
& Smith (2020), it was found that the emergent Lyα spectrum
from a sphere with a power-law density profile (n ∝ r−α for a
positive α) becomes narrower, and its peak shifts towards the
line center as the density drops more steeply (larger α). This
result indicates that the number of scatterings of Lyα pho-
tons is smaller for a steeper density profile, characterized by a
higher density at the center. Similar trends are expected in the
case, where the cross-section is independent of the frequency,
as addressed in the present study. However, no detailed in-
terpretation of this behavior was provided in their study. This

trend is attributable to the fact that the solid angle subtended by
a high-density central region from a location is always smaller
than that corresponding to the same column density expected
in the case of uniform density. Consequently, the probability
of scattering toward low densities is higher than in a uniform
sphere, resulting in a smaller number of scatterings.
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