DOI QR코드

DOI QR Code

Performance of Hybrid Laser Diodes Consisting of Silicon Slab and InP/InGaAsP Deep-Ridge Waveguides

  • Leem, Young-Ahn (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Kim, Ki-Soo (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Song, Jung-Ho (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Kwon, O-Kyun (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Kim, Gyung-Ock (Convergence Components & Materials Research Laboratory, ETRI)
  • Received : 2009.08.31
  • Accepted : 2009.12.28
  • Published : 2010.04.30

Abstract

The fundamental transverse mode lasing of a hybrid laser diode is a prerequisite for efficient coupling to a single-mode silicon waveguide, which is necessary for a wavelength-division multiplexing silicon interconnection. We investigate the lasing mode profile for a hybrid laser diode consisting of silicon slab and InP/InGaAsP deep ridge waveguides. When the thickness of the top silicon is 220 nm, the fundamental transverse mode is lasing in spite of the wide waveguide width of $3.7{\mu}m$. The threshold current is 40 mA, and the maximum output power is 5 mW under CW current operation. In the case of a thick top silicon layer (1 ${\mu}m$), the higher modes are lasing. There is no significant difference in the thermal resistance of the two devices.

Keywords

References

  1. J.M. Fedeli et al., "Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer," Advance in Optical Technol., vol. 2008, pp. 1-15.
  2. H. Park et al., "Design and Fabrication of Optically Pumped Hybrid Silicon-AlGaInAs Evanescent Lasers," IEEE J. Sel. Topics in Quantum Electron., vol. 12, no. 6, 2006, pp. 1657-1663. https://doi.org/10.1109/JSTQE.2006.884064
  3. A.W. Fang et al., "Electrically Pumped Hyrbrid AlGaInAs-Silicon Evanescent Laser," Optics Express, vol. 14, no. 20, 2006, pp. 9203-9210. https://doi.org/10.1364/OE.14.009203
  4. W.B. Joyce and R.W. Dixon, "Thermal Resistance of Heterostructure Lasers," J. Appl. Phys., vol. 46, no. 2, 1974, pp. 855-862.
  5. H. Wada and T. Kamijoh, "1.3 $\mu$m InP-InGaAsP Lasers Fabricated on Si Substrates by Wafer Bonding," IEEE J. Sel. Topics in Quantum Electron., vol. 3, no. 3, 1997, pp. 937-942. https://doi.org/10.1109/2944.640647
  6. D. Pasquariello and K. Hjort, "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Topics in Quantum Electron., vol. 8, no. 1, 2002, pp.118-131. https://doi.org/10.1109/2944.991407
  7. D. Liang et al., "Deep-Etched Native-Oxide-Confined High- Index-Contrast AlGaAs Heterostructure Lasers with 1.3 $\mu$m Dilute-Nitride Quantum Wells," IEEE J. Sel. Topics in Quantum Electron., vol. 13, no. 5, 2007, pp.1324-1331. https://doi.org/10.1109/JSTQE.2007.905097
  8. M. Legge et al., "Strongly Index-Guided II-VI Laser Diodes," IEEE Photon. Technol. Lett., vol. 12, no. 3, 2000, pp. 236-238. https://doi.org/10.1109/68.826899
  9. G. Beister and H. Wenzel, "Comparison of Surface and Bulk Contributions to Non-radiative Currents in InGaAs/AlGaAs Laser Diodes," Semicond. Science and Technol., vol. 19, 2004, pp. 494- 500. https://doi.org/10.1088/0268-1242/19/3/037
  10. S.Y. Hu et al., "The Effect of Lateral Leakage Current on the Experimental Gain/Current-Density Curve in Quantum-Well Ridge-Waveguide Lasers," IEEE J. Quantum Electron., vol. 30, no. 10, 1994, pp. 2245-2250. https://doi.org/10.1109/3.328603
  11. O.K. Kwon et al., "Operational Properties of Ridge Waveguide Lasers with Laterally Tapered Waveguides for Monolithic Integration," ETRI J., vol. 29, no. 6, 2007, pp. 811-813. https://doi.org/10.4218/etrij.07.0207.0148
  12. J.H. Song, Superluminescent Diodes and Their Packaging, doctoral dissertation, University of Maryland College Park, 2001.
  13. W. Both and J. Piprek, "Thermal Resistance of InGaAs/InP Laser Diodes," J. Therm. Anal., vol. 36, 1990, pp. 1441-1456. https://doi.org/10.1007/BF01914067

Cited by

  1. Tunable External Cavity Laser by Hybrid Integration of a Superluminescent Diode and a Polymer Bragg Reflector vol.17, pp.6, 2010, https://doi.org/10.1109/jstqe.2011.2130515