• Title/Summary/Keyword: singular integral

Search Result 167, Processing Time 0.021 seconds

NEW RESULTS ON STABILITY PROPERTIES FOR THE FEYNMAN INTEGRAL VIA ADDITIVE FUNCTIONALS

  • Lim, Jung-Ah
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.559-577
    • /
    • 2002
  • It is known that the analytic operator-valued Feynman integral exists for some "potentials" which we so singular that they must be given by measures rather than by functions. Corresponding stability results involving monotonicity assumptions have been established by the author and others. Here in our main theorem we prove further stability theorem without monotonicity requirements.

비틀림하의 복합원통에 있는 원주 표면균열에 대한 응력 확대 계수

  • Kim, Yeong-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.151-157
    • /
    • 2000
  • Stress intensity factors for the circumferential surface crack of a long composite cylinder under torsion is investigated. The problem is formulated as a singular integral equation of the first kind with a Cauchy type kernel using the integral transform technique. The mode III stress intensity factors at the crack tips are presented when (a) the inner crack tip is away from the interface and (b) the inner crack tip is at the interface.

  • PDF

Dyadic Green`s Function for an Unbounded Anisotropic Medium in Cylindrical Coordinates

  • Kai Li;Park, Seong-Ook;Pan, Wei-Yan
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.54-59
    • /
    • 2001
  • The dyadic Green`s function for an unbounded anisotropic medium is treated analytically in the Fourier domain. The Green`s function, which is expressed as a triple Fourier integral, can be next reduced to a double integral by performing the integral, by performing the integration over the longitudinal Fourier variable or the transverse Fourier variable. The singular behavior of Green`s is discussed for the general anisotropic case.

  • PDF

NUMERICAL METHOD FOR A SYSTEM OF SINGULARLY PERTURBED CONVECTION DIFFUSION EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Raja, Velusamy;Tamilselvan, Ayyadurai
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.1015-1027
    • /
    • 2019
  • A class of systems of singularly perturbed convection diffusion type equations with integral boundary conditions is considered. A numerical method based on a finite difference scheme on a Shishkin mesh is presented. The suggested method is of almost first order convergence. An error estimate is derived in the discrete maximum norm. Numerical examples are presented to validate the theoretical estimates.

Numerically integrated modified virtual crack closure integral technique for 2-D crack problems

  • Palani, G.S.;Dattaguru, B.;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.731-744
    • /
    • 2004
  • Modified virtual crack closure integral (MVCCI) technique has become very popular for computation of strain energy release rate (SERR) and stress intensity factor (SIF) for 2-D crack problems. The objective of this paper is to propose a numerical integration procedure for MVCCI so as to generalize the technique and make its application much wider. This new procedure called as numerically integrated MVCCI (NI-MVCCI) will remove the dependence of MVCCI equations on the type of finite element employed in the basic stress analysis. Numerical studies on fracture analysis of 2-D crack (mode I and II) problems have been conducted by employing 4-noded, 8-noded (regular & quarter-point), 9-noded and 12-noded finite elements. For non-singular (regular) elements at crack tip, NI-MVCCI technique generates the same results as MVCCI, but the advantage for higher order regular and singular elements is that complex equations for MVCCI need not be derived. Gauss numerical integration rule to be employed for 8-noded singular (quarter-point) element for accurate computation of SERR and SIF has been recommended based on the numerical studies.

Analysis of Electromagnetic Scattering from an Arbitrarily-Shaped Conductor using Duffy한s Method (Duffy 방법을 이용한 임의 형상 도체의 전자파 산란 해석)

  • 이승학;김채영;이창원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.834-842
    • /
    • 2002
  • The method of moment is applied to the analysis of electromagnetic scattering from an arbitrarily-shaped conductor. The conducting surface is discretized into triangular patches using a GID tool. Surface currents on a conductor are expanded with a vector triangle basis function. By using the Duffy's method, the singular integration appeared in a triangle patch can be transformed into the non-singular integral form suitable for one dimensional Gaussian quadrature integration method. Mutual and self integration extracted singular terms are evaluated by two dimensional Gaussian quadrature techniques.

Derivation of Analytic Formulas and Numerical Verification of Weakly Singular Integrals for Near-Field Correction in Surface Integral Equations

  • Rim, Jae-Won;Koh, Il-Suek
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • An accurate and efficient evaluation for hypersingular integrals (HIs), strongly singular integrals (SSIs), and weakly singular integrals (WSIs) plays an essential role in the numerical solutions of 3D electromagnetic scattering problems. We derive analytic formulas for WSIs based on Stokes' theorem, which can be expressed in elementary functions. Several numerical examples are presented to validate these analytic formulas. Then, to show the feasibility of the proposed formulations for numerical methods, these formulations are used with the existing analytical expressions of HIs and SSIs to correct the near-field interaction in an iterative physical optics (IPO) scheme. Using IPO, the scattering caused by a dihedral reflector is analyzed and compared with the results of the method of moments and measurement data.

Contact problem for a stringer plate weakened by a periodic system of variable width slots

  • Mir-Salim-zada, Minavar V.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.719-724
    • /
    • 2017
  • We consider an elastic isotropic plate reinforced by stringers and weakened by a periodic system of rectilinear slots of variable width. The variable width of the slots is comparable with elastic deformations. We study the case when the slots faces get in contact at some area. Determination of parameters characterizing the partial closure of variable width slots is reduced to the solution of a singular integral equation. The action of the stringers is replaced with unknown equivalent concentrated forces at the points of their connection with the plate. The contact stresses and contact zone sizes are found from the solution of the singular integral equation.

Thermal Stresses in a Laminated Fiber-Reinforced Composite Containing an Interlaminar Crack Under a Uniform Heat Flow (층간균열이 존재하는 균일 열유동하의 섬유강화 적층복합재료의 열응력해석)

  • 최형집;오준성;이강용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.887-902
    • /
    • 1994
  • Within the framework of anisotropic thermoelasticity, the problem of an interlaminar crack in a laminated fiber-reinforced composite subjected to a uniform heat flow is investigated. Under a state of generalized plane deformation, dissimilar anisotropic half-spaces with different fiber orientations are considered to be bound together by a matrix interlayer containing the crack. The interlayer models the matrix-rich interlaminar region of the fibrous composite laminate. Based on the flexibility/stiffness matrix approach, formulation of the current crack problem results in having to solve two sets of singular integral equations for temperature and thermal stress analyses. Numerical results are obtained, illustrating the parametric effects of laminate stacking sequence, relative crack size, crack location, crack surface partial insulation, and fiber volume fraction on the values of mixed mode thermal stress intensity factors.

Stress Intensity Factor for the Cracked Plate Reinforce with a Plate by Seam Welding

  • Kim, O.W.;Park, S.D.;Lee, Y.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.2
    • /
    • pp.18-22
    • /
    • 2001
  • The stress intensity factor has been calculated theoretically for the cracked plate subjected to remote normal stress and reinforced with a plate by symmetric seam welding. The singular integral equation was derived based on displacement compatibility condition between the cracked plate and the reinforcement plate, and solved by means of Erdogan and Gupta's method. The results from the derived equation for stress intensity factor were compared with FEM solutions and seems to be reasonable. The reinforcement effect gets better as welding line is closer to the crack and the stiffness ratio of the cracked plate and the reinforcement plate becomes larger.

  • PDF