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Dyadic Green's Function for an Unbounded Anisotropic Medium
in Cylindrical Coordinates
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Abstract

The dyadic Green's function for an unbounded anisotropic medium is treated analytically in the Fourier domain. The Green's function,
which is expressed as a triple Fourier integral, can be next reduced to a double integral by performing the integration over the longitudinal
Fourier variable or the transverse Fourier variable. The singular behavior of Green's dyadic is discussed for the general anisotropic case.

I. INTRODUCTION

Dyadic Green's function technique has long proved to be a
valuable tool in the representation of electromagnetic fields. It is
known that an explicit closed-form expression can be written for
the Green's dyadic for the uniaxial anisotropic medium with
either electric or magnetic anisotropym, or both™. But for more
general anisotropic media such as the anisotropic plasma and the
biaxial medium, the closed-form expression does not seem to be
feasible™ 1%, A three-dimensional Fourier transformation is
employed to treat analytically the dyadic Green's function for an
infinite unbounded triaxial anisotropic medium®’, Dyadic Green's
function in an infinite anisotropic plasma medium was derived
and computed”™. The dyadic Green's function in a biaxial
anisotropic medium is treated by means of a Fourier transform
in®, and the delta-type source singularity is examined carefully.

In this paper, the dyadic Green's function for the more
general anisotropic medium is carried out with the extension of
work in®. The medium is characterized by a tensor relative
dielectric permittivity of the form

N &g &gy O
£=|¢&n &y 0 (M
0 0 eé.
where &, &, and e, are real positive quantities.

The anisotropic medium described by (1) includes various
materials of physically realizable media, such as plasma,
uniaxial material, and biaxial material, efc.. The medium is
magnetically isotropic with the scalar relative magnetic permea-
bility o=4zx% 107" H/ m.

The dyadic Green's function is firstly expressed as a triple
inverse Fourier integral. Then, the integration over the longitu-
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dinal Fourier variable or transverse Fourier variable is perfor-
med. The singular behavior of Green's dyadic is discussed for
the anisotropic case. When e,=¢,=0 in (1), the dyadic
Green's function and the singular behavior coincide with those
of Cottis, Vazonouras, and Spyrou[ﬂ.

An exp (—iwf) time dependence is assumed and suppressed

throughout the text.

. FORMULATION OF THE PROBLEM

The dyadic Green's function due to a point source excitation
located at r' inside an anisotropic medium is defined as the
solution of the vector wave equation

UxXUX G(r,7)—KBe Glr,¥)=To(r—7), @)

where %, is the free-space wave number, and T~ is the unit

dyadic. Using Fourier transform, & (#,#") is represented as
GO = [ [ [aW) - exolik- (r=lak  G)

where g (&) is Fourier transform of G(#,#") and k =
kk=pp+ 2z is the Fourier transform variable in cylindrical
coordinates (p, ¢,,A).

The limits of integration in (3) run from —oco to +co and
are omitted for simplicity; this convention will be maintained in
the following. The dielectric tensor of (1) is written in
cylindrical coordinates as

)

g €n 0

. ey € 0
E:
0 0 €13
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where

en="{ey cos’p,+¢,, sin?p,) + (e, + ¢, )sing,cos9,, (5)
ep={&, cos’p,— &, 81N 2:_:01,) +(gy—e)sing, cosg,, (6)
g = (£,,008 “p,— &4 sin’p,) + (e,,— £,)sin g, cosp,, (7)
en = (&, sin g, + &, cos %p,) + (e, + &, sin @, cOS 2,, (8)
€35= Ezz, )
Substituting (3) and (4) into (2), with corresponding Fourier

integral expression for the delta function and applying the
operator v x v x with respect to the o, ¢, z spatial cylindrical

coordinates, the matrix equation for the elements of g (&)
results as follows:

o ~ 1 \3

A - g(k)=(—2;[-) 1, a10)
where

AR =t(T-ER)— K=, 5]

G(r,7") can be obtained in the form of a triple Fourier
integral

, 1 -~ (2} E . B
C(r,r)=——(2ﬂ)3 fff—_(_)'aD(k) « explik- (r— #)]dk
(12)

where D (k) is the determinant of A (&), and 2’ (&) is
adjoint matrix given by

Ay Qpp, Ay
Loy Coe, Lo,
Ay Qip, A

a? (B (13)

The elements of 2 (&) are given as follows:

Ay =1+ [ — K e+ en) ]’ + B en(B e— 29, (14)

@ o, =M e ' — Ky ey 6, (13)
@ u=a="— 2 en— 1, (16)
@ o=k ey b’ — K en ex, )
g, ==k &1 P — K (A — Kl ), (18)
@ o0 =K €3 AP, (19)
@,= K €12 3D, (20)
au=(P =B et + (& ey — AN (B en— 1)~ K e &g,
@D

To study the Green's function, one may regard & (7, 7)) as
a wave propagating either along the z axis or away from the z
axis. Accordingly, the above integral should be written in a
suitable form by expressing D (k) as a biquadratic polynomial
in either the A Fourier variable or the p Fourier variable.

In the first case, one writes D(k) as
D(k) ==k e = DN —13), (22)

where +1,=+24{p, ¢,,i = 1,2 are the four roots of the bi-
quadratic in A as

— k) e (A + 5 AP ) =0, (23)
where
by=—Fi(e,te,)+ (1 +E @) e, 24)
ci=ky El@,) — k[ &(,) + Lo e.10" + [ &g/ e.]p"
(25)
E( @ﬁ) =E&n, (26)
Uy =gnen—epey, @n

In the second case, D(%) is written as
D(B) ==K &0 )"~ pD(* = 15) (28)

where +£1,=+A(p, ¢,),7 = 1,2 are the four roots of the
biquadratic in o as

‘—IE‘% E(¢p)(P4',- bpp2+ Cp)=0, (29)
where

by=— kil e+ o) E o)1+ [1+ e/ E0,) 3%, (30)
Cp= Ezz/E( Spp)[/ld - kg(sxx+ Eyy)/‘lz + ké é‘( ‘Pz;)] , (31)

Using the well-known expansion of a plane wave

exp(Gk- N =exp(jda) 20 " Tnlpo)explim(eo—on)],

(32)

where J». is the m order Bessel function of the first kind,
G (»,#) can be rewritten as

< B B el - iz ) expliimet ng)]
¥ exp[ —j(m+n)g,)] - %p—) - a(p, 9,4,

(33)

where g (%) is the matrix resulting after the translation of
a2 (k) from the (p, @,,A) cylindrical coordinate system to
the (e, ¢, 2) cylindrical coordinate system, the unit vectors of

which do not depend upon the integration variables. This is
accomplished via the translation

a(B=T7"1 2@ T, (34)
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and
bbb b
T=|9,"0 ¢, 9 ¢,°2 ]|, 3%
Z o Z-@ z

B3y

[I. INTEGRATION OVER THE LONGITUDINAL AND
TRANSVERSE FOURIER VARIABLES

In this section, the case corresponding to »= »* will be
examined, while the case # — #° will be examined in Section
4, Studies of the integrand function (33) are performed over the
A and p Fourier variables, respectively.

In the case of performing the integration over the A variable,
we write D(k) as in (22) and four poles appear in the
integrand function, namely, +A,= £A,(p, ¢,),7 = 1,2. The in-
tegrations to be performed are of the form

1=[" F(p, 9,4 - explid(z—2))]

Py TV T Co

The integrals given by (36) are broken into integrals of the
form as

w_ (° A exp[iMz—2)] _
Iﬂ f—m (/‘2_/1%)(/12_/15) d": z 0’152;3, (37)

These integrals are evaluated by appropriate contour integra-
tion to yield the final result®

I =2 A exp it (2= 201~ 4 explida(z~ )]}
(38)

where

— 1, z>z
s={ 5 2Z% (39)

In the case of performing the integration over the p variable,
we write D(k) as in (28). Thus, four poles appear in the
integrand function, namely, +p,= £p(p, ¢,), ;= 1,2. The in-
tegrations to be performed are of the form

j;: f_wm F(p; Loy /D * ]m(pp)]n(pp,)

- 7 (40

Tt may easily be seen that both the term containing a 2*
term of F(p, ¢,.A) when z=z and the pp element con-
taining a p4 term of F(p, ¢, A) when o= p" correspond to the
singularity source term, respectively. They are examined in

section 4. The integrals given by are broken into integrals of the
form as
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If»’):fmm P Tnlp0)](00")

(pz_p%)(pz_pg) dp, 7=1,2,3,4 {41)

Using the following relations

D S 1 ( p Db _)) (42)

(R—D(*—19)  Pi—p5 \ =1 p'—03)
D2 -1 ( p » ) (43)

(W—pD(*— P9  Fi—-ph \pt—p ' —1;)

£ 1 [_ph 8 )
=D —pD) -5 |\ pF—pt  pP—pi )

integrals I;Sﬁ in (41) with respect to p can be reduced to

@ - (o) {p0")

- ‘pz_p% dp' j=1’23 (45)
oo j_ :
f_m by fm;ff)gg(ﬂp) &, i=1.9, (46)

In order to solve (45) and (46), the following relations are
utilized:

Tp0 =5 LHY (po)+ HP(20)], @)
HP(=p0)= (=) B (p0), (“3)

where K and H? are the m order Hankel functions of the
first and second kind, respectively.

Thus, the integrals in (54) can be analytically solved.

In the case of p>p’, equation (45) can be calculated as
follows:

< - T lpo)00")

a;
—o #— 1t ?
B %pi_lHﬁ)(Dlp)[Hﬁ) (010)+HP (91001, m+n= even
- 0, m+n=odd,
(49)
In the case of p<p’, (45) can be calculated as
» p - Ik 0000
4]
L
T HD (00 HY (000 + HP(019), m+ 2= even
- 0, m~+ n=odd,
(50)

With similar procedure, the integrals (46) can be easily
obtained by using (49) and (50).

IV. DERIVATION OF THE DELTA-TYPE
SOURCE SINGULARITY

The singular behavior of Green's dyadic has been extensively
discussed over the past 30 years for the isotropic case™ " In
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recent years, the singular behavior of Green's dyadic for the
biaxial anjsotropic case was discussed in [6]. In this paper, the
singular behavior of the Green's dyadic for the more general
anisotropic case is discussed.

Upon inspection of (12)~(13), taking into account (22) and
(28), it may be seen that the A* term in g, and the P! term
in A, ie., the following terms in g and g, are as follows:

4
- 51
R =7 G
4

b
B o )0 — (" — P °

(52)

With the similar method inm, one can easily get the delta-
type terms. The first delta-type term in the case of performing
the integration over A in (51) corresponds to a pillbox principle
yolume. The second one in the case of performing the
integration over p in (52) corresponds to a needle-shaped
principal volume, It is readily seen that the delta-type ferm is
k2 ez} 6(r— #)(22), which is the same with that of in
the case of the pillbox principal volume.

Particular attention will be paid on the inspection on the
delta-term corresponding to the needle-shaped principal volume.

In the case of a needle-shaped principal volume, the (52)
term contributes to the delta-type term through

1
RE(op)

1 (53)

B[ (£4c08 0, + £45in “0,) + (6,4 + £,,) sin @,c08 @,

Upon the translation in the cylindrical coordinate system via
(34)~(35), this term appears in g,,, a4, &40» 44> Multiplied by

(p- D =cos’(g,— @), (34)
(3 @)*=sin’(g,— ¢, (55)
(b 03 @ =sin(p,— @)cos(p,— @), (56)

Hence, the following terms emerge:

cos o,
[ (£xC08 2@, + £,8in 20,) + (£, + €,,) 8in @,c08 @5 ]
_ 1+ cos2¢,
a4+ ficos2¢,+ Bsinle,
Sinzgo,5
[ (g4co520,+ £,5i°0,) + (&, + &,,) 8in ¢,C08 @]
_ 1—cos2¢p,
a+ Bicos2e,+ Bysinle,
Sin @,co8 @,
[ (6,08 0+ 2,80 20,) + (£, + &,,) sin @,c08 @)

_ sin2¢,
T a+ Bicos2e,t Bsinle, (39

67

(58)

where

A= €yt Epyy, B = Exe— Epyy Ba= 1y T &, (60}
and

=V FT B coso=LF singy =% (61

The constant parts contributed by the above terms may be
found as the zero-order coefficients in their Fourier series
expansion, as follows:

1+ cos2¢,

(5’)—_1_ 2r

G = Zn'fo a+ Beos (e, — @) ey, (62)
»_ 1 2 1—C052§0,5

Co” = o fo a+ Beos@e,— o) dg;, (63)
@__1 2 SianD,,

G =5y fu a+ Beos (20,— vg) ey, (64)

The above-mentioned three coefficients can be evaluated by
means of the integrals

2 1 o 272'
fu a+ Beos (2 ¢,— ¢q) dey= Vat— g ()
J-‘M co52¢, d _B(2n _ 2ma

o a+ Boos@e,— ) T R ( B NS F )

f2” sin2¢, d _ B2  2ma
0 a+ Beos(Re,— ey ¥ B( Y, az—,@z)'
(67)
which eventually yield
@__1 % 1+cos2e,
G =5 ), a+ Beos 2p,— @o) ae,
1 _ “51) B
Jﬁ_#@_ Ak (68)
w__1 = 1—cos2¢,
G =5, fo a+ Beos (2, — og) ey
1 af, B
_ , _A 69
\/&2—/5’4(1—1— Bz) Jon @)
@w_ 1 (= sin2g,
G = 27 Jo e+ Beos(2¢,— ¢q) dey
_ B e
AUyl 7

From (33) and (34), and taking (68)~(70) into account, one
concludes that the delta-type term is
{(c§? cosp+ CiPsin’p+ C{9sin pcos @) 20
+(C{? sin’p+ C§Pcos 2o — C? sin pcos @) 9
1 (CO— C{PYsin pcos @+ Cy( ) (cos *¢— sin )]
- (Po+ oo (r—17). 71
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In the biaxial case e.=¢,e,=6y,6, =63, and e,=
e,,=0, the above terms reduce to

2 -2 =2 2
COS 8111 [t 5171 cos i
- + +
(S e oo (e )
1'% 51_\/ &g R o~ o~
v singcos ¢ - (op+ ¢p)

1 L
Xma(r T). (72)

The expression of (72) coincides tfo that given in the literature

© In the isotropic case e, =ey;—e;—¢, the above terms

reduce to  (2&) " '8(r— # ) oo+ o) for a needle-shaped
principal volume or e;'6(r—#")(zz) for a pillbox-shaped
principal volume. Both expressions coincide to those given in

literature®.

V. CONCLUSION

In this paper, the dyadic Green's function for an unbounded
anisotropic medium is treated analytically in the Fourier domain.
The Green's function, which is expressed as a triple Fourier
integral, can be reduced to a double integral by performing the
integration over the longitudinal Fourier variable or the
transverse Fourier variable. The singular behavior of Green's
dyadic is discussed for the general anisotropic case. The
delta-type source term has been extracted for both the pillbox
principal volume and the needle-shaped principal volume. In the
limits e, +#¢,,+¢. and e,=e,=0, the term reduces to the
corresponding biaxial case.
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