• Title/Summary/Keyword: single-mode operation

Search Result 293, Processing Time 0.023 seconds

Single stage Boost Input Type Resonant AC/DC Converter (단일단 부스트 입력방식의 공진형 AC/DC 컨버터)

  • 연재을;정진범;김희준
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.65-72
    • /
    • 2004
  • This paper proposes the novel boost input type resonant AC/DC converter. Since the proposed converter is single stage topology, it controls both of the input power factor and the output voltage at the same time, and resultingly obtains the high power factor of 99% with average current mode pulse width modulation. Especially, to accomplish the zero voltage switching, the resonance between the leakage inductance and external capacitor is used. For the theoretical consideration of the proposed converter, the six operation modes divided by means of current path are discussed, and the resonance characteristics in steady state are analyzed. To verify the validity of the proposed converter, a 200[W]($120[V_AC],\; 출력\; 48[V_DC],\; 4[A]$prototype converter was built and its experimental results were presented in this paper.

Single-Phase Transformerless Inverter using Passive Bypass Filter (수동 바이패스 필터를 이용한 단상 무변압기형 인버터)

  • Yang, Min-Kwon;Heo, Jun;Lee, Myung-Chul;Kim, Yu-Jin;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.129-138
    • /
    • 2018
  • Previous single-phase transformerless inverters used active bypass switching circuits that need auxiliary power switches to minimize ground leakage current. However, switching and gate driving losses are increased due to the use of additional power switches. To cope with this drawback, this work proposes a transformerless inverter using a passive bypass filter without any auxiliary power switch. The operation and control of the proposed inverter are described. The ground leakage current characteristics are analyzed for the proposed inverter with the passive bypass filter. The experimental results of the proposed inverter for a 1.0kW prototype system are presented.

8.2-GHz band radar RFICs for an 8 × 8 phased-array FMCW receiver developed with 65-nm CMOS technology

  • Han, Seon-Ho;Koo, Bon-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.943-950
    • /
    • 2020
  • We propose 8.2-GHz band radar RFICs for an 8 × 8 phased-array frequency-modulated continuous-wave receiver developed using 65-nm CMOS technology. This receiver panel is constructed using a multichip solution comprising fabricated 2 × 2 low-noise amplifier phase-shifter (LNA-PS) chips and a 4ch RX front-end chip. The LNA-PS chip has a novel phase-shifter circuit for low-voltage operation, novel active single-to-differential/differential-to-single circuits, and a current-mode combiner to utilize a small area. The LNA-PS chip shows a power gain range of 5 dB to 20 dB per channel with gain control and a single-channel NF of 6.4 dB at maximum gain. The measured result of the chip shows 6-bit phase states with a 0.35° RMS phase error. The input P1 dB of the chip is approximately -27.5 dBm at high gain and is enough to cover the highest input power from the TX-to-RX leakage in the radar system. The gain range of the 4ch RX front-end chip is 9 dB to 30 dB per channel. The LNA-PS chip consumes 82 mA, and the 4ch RX front-end chip consumes 97 mA from a 1.2 V supply voltage. The chip sizes of the 2 × 2 LNA-PS and the 4ch RX front end are 2.39 mm × 1.3 mm and 2.42 mm × 1.62 mm, respectively.

A Characteristic Analysis of Single-Power-Stage High Frequency Resonant AC-DC Converter with High Power Factor (고역률 단일 전력단 고주파 공진 AC-DC 컨버터의 특성해석)

  • 남승식;원재선;황계호;오경섭;박재욱;김동희;오승훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.372-380
    • /
    • 2004
  • This paper proposes a single-power-stage high frequency resonant AC-DC converter with high power factor using ZVS(Zero Voltage Switching), and integrates a conventional converter with two stage into single stage converter. Input power factor is possible to be improved as a high power factor because inductor for power factor correction(PFC) is connected in input and converter is operated in discontinued current mode(DCM) with constant duty cycle and variable switching frequency. The conventional converter with two stage need to add a switch in order to control a power factor, but single stage converter have a advantage that system is simple and cost is down, confidence is improved, etc. This paper described a operation principle and characteristic analysis for single stage AC-DC converter with high power factor and have evaluated characteristic values by using normalized parameter. We make a experimental equipment using MOSFET as a switching device on the basis of characteristic values obtained from characteristic evaluations and we conform a rightfulness of theoretical analysis by comparing theoretical waveforms and experimental waveforms.

Design of clock duty-cycle correction circuits for high-speed SoCs (고속 SoC를 위한 클락 듀티 보정회로의 설계)

  • Han, Sang Woo;Kim, Jong Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.51-58
    • /
    • 2013
  • A clock duty-cycle corrector (DCC) which is an essential device of clocking circuits for high-speed system-on-chip (SoC) design is introduced in this paper. The architectures and operation of conventional analog feedback DCCs and digital feedback DCCs are compared and analyzed. A new mixed-mode feedback DCC that combines the advantages of analog DCCs and digital DCCs to achieve a wider duty-cycle correction range, higher operating frequency, and higher duty-cycle correction accuracy is presented. Especially, the architectures and design of a mixed-mode duty-cycle amplifier (DCA) which is a core unit circuit of a mixed-mode DCC is presented in detail. Two mixed-mode DCCs based on a single-stage DCA and a two-stage DCA were designed in a 0.18-${\mu}m$ CMOS process, and it is proven that the two-stage DCA-based DCC has a wider duty-cycler correction range and smaller duty-cycle correction error.

Characteristics of Visible Laser Diode and Its Injection-Locking (가시광 다이오드 레이저의 스펙트럼 및 주입-잠금 특성분석)

  • 남병호;박기수;권진혁
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.278-285
    • /
    • 1994
  • We investigated the spectral characteristics for temperature and driving current change in visible laser diode. As a result of spectrum analysis, the ratio of frequency change for temperature and driving current change were about $33 GHz/^{\circ}C$, 6.6 GHz/mA in the region which was not mode hopping range. Compared to the sharp mode hopping in the near IR single mode AlGaAs lasers, the visible laser diode showed relatively broad multimode operation in the mode hopping region. We performed the experiment of injection-locking characteristics analysis for visible laser diode. Locking half bandwidth(LHBW) was measured 0~5.0 GHz for $0~25\muW$ input power and it was dependent on the input power. Also, LHBW for polarization angle was dependent on the difference of polarization angle between master laser and slave laser. The phase change of injection-locked output beam of the slave laser diode as a function of the drive current was measured in the interferometer which was composed of master laser and slave laser. The ratio of phase change with the slope of 5.0~1.3 rad/mA was obtained within injection-locking range for the change of $2~25\muW$ input power. power.

  • PDF

Femtosecond Mid-IR Cr:ZnS Laser with Transmitting Graphene-ZnSe Saturable Absorber

  • Won Bae Cho;Ji Eun Bae;Seong Cheol Lee;Nosoung Myoung;Fabian Rotermund
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.738-744
    • /
    • 2023
  • Graphene-based saturable absorbers (SAs) are widely used as laser mode-lockers at various laser oscillators. In particular, transmission-type graphene-SAs with ultrabroad spectral coverage are typically manufactured on transparent substrates with low nonlinearity to minimize the effects on the oscillators. Here, we developed two types of transmitting graphene SAs based on CaF2 and ZnSe. Using the graphene-SA based on CaF2, a passively mode-locked mid-infrared Cr:ZnS laser delivers relatively long 540 fs pulses with a maximum output power of up to 760 mW. In the negative net cavity dispersion regime, the pulse width was not reduced further by inhomogeneous group delay dispersion (GDD) compensation. In the same laser cavity, we replaced only the graphene-SA based on CaF2 with the SA based on ZnSe. Due to the additional self-phase modulation effect induced by the ZnSe substrate with high nonlinearity, the stably mode-locked Cr:ZnS laser produced Fourier transform-limited ~130 fs near 2,340 nm. In the stable single-pulse operation regime, average output powers up to 635 mW at 234 MHz repetition rates were achieved. To our knowledge, this is the first attempt to achieve shorter pulse widths from a polycrystalline Cr:ZnS laser by utilizing the graphene deposited on the substrate with high nonlinearity.

Employing Multi-Phase DG Sources as Active Power Filters, Using Fuzzy Logic Controller

  • Ghadimi, Ali Asghar;Ebadi, Mazdak
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1329-1337
    • /
    • 2015
  • By placing distributed generation power sources beside a big nonlinear load, these sources can be used as a power quality enhancer, while injecting some active power to the network. In this paper, a new scheme to use the distributed generation power source in both operation modes is presented. In this scheme, a fuzzy controller is added to adjust the optimal set point of inverter between compensating mode and maximum active power injection mode, which works based on the harmonic content of the nonlinear load. As the high order current harmonics can be easily rejected using passive filters, the DG is used to compensate the low order harmonics of the load current. Multilevel transformerless cascade inverters are preferred in such utilization, as they have more flexibility in current/voltage waveform. The proposed scheme is simulated in MATLAB/SIMULINK to evaluate the circuit performance. Then, a 1kw single phase prototype of the circuit is used for experimental evaluation of the paper. Both simulative and experimental results prove that such a circuit can inject a well-controlled current with desired harmonics and THD, while having a smaller switching frequency and better efficiency, related to previous 3-phase inverter schemes in the literature.

Study on the Dynamic Synchronizing Control of An Islanded Microgrid (독립운전 마이크로그리드의 능동형 동기 투입 제어에 관한 연구)

  • Cho, Chang-Hee;Jeon, Jin-Hong;Kim, Jong-Yul;Kwon, Soon-Man;Kim, Sung-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1112-1121
    • /
    • 2011
  • A microgrid is an aggregation of multiple distributed generators (DGs) such as renewable energy sources, conventional generators, and energy storage systems that provide both electric power and thermal energy. Generally, a microgrid operates in parallel with the main grid. However, there are cases in which a microgrid operates in islanded mode, or in a disconnected state. Islanded microgrid can change its operational mode to grid-connected operation by reconnection to the grid, which is referred to as synchronization. Generally, a single machine simply synchronizes with the grid using a synchronizer. However, the synchronization of microgrid that operate with multiple DGs and loads cannot be controlled by a traditional synchronizer, but needs to control multiple generators and energy storage systems in a coordinated way. This is not a simple job, considering that a microgrid consists of various power electronics-based DGs as well as alternator-based generators that produce power together. This paper introduces the results of research examining an active synchronizing control system that consists of the network-based coordinated control of multiple DGs. Consequently, it provides the microgrid with a deterministic and reliable reconnection to the grid. The proposed method is verified by using the test cases with the experimental setup of a microgrid pilot plant.

Integrated Boost-Flyback ZCS Quasi-Resonant Power Factor Preregulator (부스트-플라이백 결합형 ZCS Quasi-Resonant 역률개선 컨버터)

  • 이준영;문건우;김현수;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.91-98
    • /
    • 1999
  • An integrated ZCS quasi-resonant converter(QRC) for the power factor correction with a single switch is presented in this paper. The power factor correction can be achieved by the discontinuous conduction mode(DCM) operation of the input current. The proposed converter gives the good power factor, low line current harmonics, and tight output regulation. The input current waveform of the prototype designed using design equations shows about 15% of total harmonic distortion at rated condition. Also, the efficiency and power factor can be obtained about 86% and 0.985, respectively, at rated condition. The proposed converter is suitable for a low power level converter with a tightly regulated low output voltage and switching frequency of more than several hundreds kHz.

  • PDF