DOI QR코드

DOI QR Code

Femtosecond Mid-IR Cr:ZnS Laser with Transmitting Graphene-ZnSe Saturable Absorber

  • Won Bae Cho (Digital Biomedical Research Division, Electronics and Telecommunications Research Institute) ;
  • Ji Eun Bae (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Seong Cheol Lee (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Nosoung Myoung (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Fabian Rotermund (Department of Physics, Korea Advanced Institute of Science and Technology)
  • Received : 2023.07.28
  • Accepted : 2023.09.21
  • Published : 2023.12.25

Abstract

Graphene-based saturable absorbers (SAs) are widely used as laser mode-lockers at various laser oscillators. In particular, transmission-type graphene-SAs with ultrabroad spectral coverage are typically manufactured on transparent substrates with low nonlinearity to minimize the effects on the oscillators. Here, we developed two types of transmitting graphene SAs based on CaF2 and ZnSe. Using the graphene-SA based on CaF2, a passively mode-locked mid-infrared Cr:ZnS laser delivers relatively long 540 fs pulses with a maximum output power of up to 760 mW. In the negative net cavity dispersion regime, the pulse width was not reduced further by inhomogeneous group delay dispersion (GDD) compensation. In the same laser cavity, we replaced only the graphene-SA based on CaF2 with the SA based on ZnSe. Due to the additional self-phase modulation effect induced by the ZnSe substrate with high nonlinearity, the stably mode-locked Cr:ZnS laser produced Fourier transform-limited ~130 fs near 2,340 nm. In the stable single-pulse operation regime, average output powers up to 635 mW at 234 MHz repetition rates were achieved. To our knowledge, this is the first attempt to achieve shorter pulse widths from a polycrystalline Cr:ZnS laser by utilizing the graphene deposited on the substrate with high nonlinearity.

Keywords

Acknowledgement

The National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning, Korea (RS-2023-00208484); the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2021-0-00019, Research on Optical Learning Technology for AI).

References

  1. S. B. Mirov, V. V. Fedorov, D. Martyshkin, I. S. Moskalev, M. Mirov, and S. Vasilyev, "Progress in mid-ir lasers based on Cr and Fe-doped II-VI chalcogenides," IEEE J. Sel. Top. Quantum Electron. 21, 292-310 (2015). https://doi.org/10.1109/JSTQE.2014.2346512
  2. J. Ma, Z. Qin, G. Xie, L. Qian, and D. Tang, "Review of mid-infrared mode-locked laser sources in the 2.0 ㎛-3.5 ㎛ spectral region," Appl. Phys. Rev. 6, 021317 (2019).
  3. I. T. Sorokina and E. Sorokin, "Femtosecond Cr2+-based lasers," IEEE J. Sel. Top. Quantum Electron. 21, 273-291 (2015). https://doi.org/10.1109/JSTQE.2014.2341589
  4. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, "Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser," Opt. Lett. 40, 5054-5057 (2015). https://doi.org/10.1364/OL.40.005054
  5. M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, "Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials," Nature 432, 374-376 (2004). https://doi.org/10.1038/nature03027
  6. E. Sorokin, N. Tolstik, K. I. Schaffers, and I. T. Sorokina, "Femtosecond SESAM-modelocked Cr:ZnS laser," Opt. Express 20, 28947-28952 (2012). https://doi.org/10.1364/OE.20.028947
  7. A. Barh, J. Heidrich, B. O. Alaydin, M. Gaulke, M. Golling, C. R. Phillips, and U. Keller, "Watt-level and sub-100-fs self-starting mode-locked 2.4-㎛ Cr:ZnS oscillator enabled by GaSb-SESAMs," Opt. Express 29, 5934-5946 (2021). https://doi.org/10.1364/OE.416894
  8. N. Tolstik, O. Okhotnikov, E. Sorokin, and I. T. Sorokina, "Femtosecond Cr:ZnS laser at 2.35 ㎛ mode-locked by carbon nanotubes," Proc. SPIE 8959, 89591A (2014).
  9. D. Okazaki, H. Arai, A. Anisimov, E. I. Kauppinen, S. Chiashi, S. Maruyama, N. Saito, and S. Ashihara, "Self-starting mode-locked Cr:ZnS laser using single-walled carbon nanotubes with resonant absorption at 2.4 ㎛," Opt. Lett. 44, 1750-1753 (2019). https://doi.org/10.1364/OL.44.001750
  10. N. Tolstik, E. Sorokin, and I. T. Sorokina, "Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration," Opt. Express 22, 5564-5571 (2014). https://doi.org/10.1364/OE.22.005564
  11. W. B. Cho, S. Y. Choi, C. Zhu, M. H. Kim, J. W. Kim, J. S. Kim, H. J. Park, D. H. Shin, M. Y. Jung, F. Wang, and F. Rotermund, "Graphene mode-locked femtosecond Cr2+:ZnS laser with ~300 nm tuning range," Opt. Express 24, 20774-20780 (2016). https://doi.org/10.1364/OE.24.020774
  12. N. Tolstik, A. Pospischil, E. Sorokin, and I. T. Sorokina, "Graphene mode-locked Cr:ZnS chirped-pulse oscillator," Opt. Express 22, 7284-7289 (2014). https://doi.org/10.1364/OE.22.007284
  13. W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, "High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 ㎛," Opt. Lett. 36, 4089-4091 (2011). https://doi.org/10.1364/OL.36.004089
  14. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, "Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber," Appl. Phys. Express 5, 032701 (2012).
  15. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, "Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm," Opt. Lett. 38, 341-343 (2013). https://doi.org/10.1364/OL.38.000341
  16. A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, "2㎛ solid-state laser mode-locked by single-layer graphene," Appl. Phys. Lett. 102, 013113 (2013).
  17. S. Davide Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, "Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber," Opt. Lett. 38, 1745-1747 (2013). https://doi.org/10.1364/OL.38.001745
  18. E. Ugolotti, A. Schmidt, V. Petrov, J. Wan Kim, D.-I. Yeom, F. Rotermund, S. Bae, B. Hee Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguilo, F. Diaz, and U. Griebner, "Graphene mode-locked femtosecond Yb:KLuW laser," Appl. Phys. Lett. 101, 161112 (2012).
  19. A. V. Pushkin, E. A. Migal, S. Tokita, Y. V. Korostelin, and F. V. Potemkin, "Femtosecond graphene mode-locked Fe:ZnSe laser at 4.4 ㎛," Opt. Lett. 45, 738-741 (2020). https://doi.org/10.1364/OL.384300
  20. G. N. Patwardhan, J. S. Ginsberg, C. Y. Chen, M. M. Jadidi, and A. L. Gaeta, "Nonlinear refractive index of solids in mid-infrared," Opt. Lett. 46, 1824-1827 (2021). https://doi.org/10.1364/OL.421469
  21. F. X. Kartner, I. D. Jung, and U. Keller, "Soliton mode-locking with saturable absorbers," IEEE J. Sel. Top. Quantum Electron. 22, 540-556 (1996).