• Title/Summary/Keyword: single-cell gel electrophoresis (SCGE)

Search Result 40, Processing Time 0.043 seconds

Evaluation of DNA damage in Pesticide Sprayers using Single Cell Gel Electrophoresis (단세포전기영동법(single Cell Gel Electrophoresis Assay)을 이용한 농약 살포자의 DNA손상 평가)

  • 이연경;이도영;이은일;이동배;류재천;김해준;설동근
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.128-134
    • /
    • 2001
  • Single cell gel electrophoresis (SCGE) assay, also called comet assay, is a rapid and sensitive method to detect DNA damage in single cell level. To evaluate the DNA damage of lymphocytes of pesticides sprayers, SCGE assay was carried out for 50 pesticides sprayer and 58 control subjects. They were interviewed with structured questionnaire to get the information about the kinds and amount of pesticide. Insecticides and fungicides were predominant among pesticides. Major components of pesticides were organophosphorus, organosulfate, cartap, carbamates, and triazole. Sprayed pesticides were classified into two groups. Group I included organophosphorus, organoarsenic, organotin, tetrazine, triazole and gramoxone, which were known to cause DNA damages. Group II pesticide were carbamates, surfactants, organosulfates, etc., which were not found as DNA damaging agents in scientific documents. Olive tail moments of 100 lymphocytes were measured by KOMET 3.1 program for each person. The means of tail moments were compared between farmers exposed to pesticides and control subjects. Farmers showed higher tail moments than control subjects (2.07$\pm$1.40 vs 1.53$\pm$0.77, p<0.05). The means of tail moments also were compared among group I sprayers (n=36), group II sprayers (n=24) and, control subject, and the means or tail moments were 3.4s$\pm$3.2o, 2.66$\pm$2.20 and 1.53$\pm$0.77 respectively. The difference between means of group I sprayers and controls was statistically significant (p<0.05). In conclusion, this study showed higher DNA damage in farmers exposed to pesticides than control subjects, and comet assay could be useful as a biological monitoring method of genotoxic pesticides for farmers.

  • PDF

Assessment of DNA Damage using an Alkaline Single Cell Gel Electrophoresis (SCGE) Comet Assay and Toxic Effects in Chickens by T-2 Toxin Treatment (T-2 toxin을 투여한 닭에서 Comet assay 방법을 이용한 DNA 손상 평가와 독성)

  • Hah Dae-Sik;Heo Jung-Ho;Lee Kuk-Cheon;Cho Myung-Heui;Kim Kuk-Hun;Kim Chung-Hui;Lue Jae-Du;Lee Seung-Hwan;Kim Gon-Sup;Kim Eui-Gyung;Kim Jong-Shu
    • Toxicological Research
    • /
    • v.22 no.2
    • /
    • pp.75-85
    • /
    • 2006
  • This study was designed to evaluate the possible DNA damaging effects of T-2 toxin using an alkaline single cell gel electrophoresis (SCGE) comet assay and also to investigate toxic effects in chickens. A total of 20 chickens were used in these experiments. Graded concentrations of dietary T-2 toxin (0, 4, 8, and $16{\mu}g/g$ of diet) were given to groups of 5 broiler chickens. In comet assay, The DNA damage was analysed by the tail extent moment (TEM) and tail length (TL), which were used as markers of DNA strand breaks in SCGE. A significant dose-dependent increase in the extent of DNA migration as well as in the percentage of cells with tails was observed after treatment with T-2 toxin (P<0.05). Treatment with the low T-2 toxin ($4{\mu}/g$ of diet) induced a relatively low level of DNA damage in comparison with the high T-2 toxin ($16{\mu}/g$ of diet) group. The growth rate was significantly reduced by concentrations of 8, and $16{\mu}/g$ of diet (P < 0.05). The feed conversion ratio were significantly affected by any concentrations (P < 0.05). The relative weight of the spleen, and lung was decreased by the growth inhibitory concentrations. The bursa of Fabricius, thymus, and kid- ney were decreased in relative weight by concentrations of $16{\mu}/g$ of diet. The relative weight of the liver and heart were unaffected. The hemoglobin (Hb), hematocrit (HCT), and mean corpuscular hemoglobin (MCH) were decreased at concentration of $16{\mu}/g$ of diet. As compared with control chickens, there was no marked change in serum components except uric acid in T-2 treated chickens. All lymphoid tissues retained atrophic and lymphoid cell depletion throughout the three weeks trial.

Radiation Protective Effect of vitamin C and Cysteine on DNA Damage in Mice Splenic Lymphocytes by Single Cell Gel Electrophoresis Assay (단세포 겔 전기영동법을 이용한 생쥐 비장 림프구 DNA 손상에 대한 비타민 C 및 시스테인의 방사선 방어효과)

  • 천기정;김진규;김봉희
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.1
    • /
    • pp.17-20
    • /
    • 2001
  • The alkaline comet assay, employing a single-cell gel electrophoresis(SCGE), is a rapid, simple and sensitive technique for visualizing and measuring DNA damage leading to strand breakage in individual mammalian cells. The protecting effect of pretreatment with vitamin C and cysteine on the DNA damage of gamma ray was investigated in mice splenic lymphocytes. Vitamin C and cysteine were administered orally for five consecutive days before irradiation. Four week old ICR male mice were irradiated wish 3.5Gy of γ-radiation and were sacrificed 3 days later. Spleens were taken for DNA damage examination by Comet assay and the tail moments of DNA single -strand breaks in tole splenic lymphocytes were evaluated. The results show that pretreatment with vitamin C and cysteine were effective in protecting against DNA damage by gamma ray. Administration of antioxidants like vitamin C and cysteine to mice before irradiation was effective in reducing the tail moment of splenic lymphocytes DNA.

  • PDF

The Influence of Smoking and Low Dose Radiation Exposure to the Damage of the Lymphocyte DNA (흡연과 낮은 방사선 피폭량이 Lymphocyte DNA 손상에 미치는 영향)

  • Shin Heuyn-Kil;Kim Yun-Joo;Kwon Eun-Hye;Yook Jin-Young;Choi Soo-Yong
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.4
    • /
    • pp.237-242
    • /
    • 2003
  • Single cell gel electrophoresis (SCGE) was used to the experiment with the variation on the amount of smoking and low dose radiation exposure to find how much the Lymphocyte DNA was damaged, and especially for whom smoke a lot(about 20 or more than 20 cigarettes a day) it was found to be highly damaged. While, the damage of 'not more than 20 cigarettes a day' was found to be not so much significant as like for whom smoke about or more than 20 cigarettes a day And, according to the different amount of the radiation exposure, the Lymphocyte DNA was found to be considerably damaged for 0-13m Sv (P<0.01), it was not able to prove the relationship between the DNA damage and the radiation exposure.

Protective Effects of Ginkgo Biloba Leaf Extract(GBE) against 1,2,4-benzenetriol Induced Toxicity in Vitro (Ginkgo biloga 잎 추출물의 1,2,4-benzenetriol에 대한 항산화 효과에 대한 연구)

  • 이영준;김태연;정해원
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.124-130
    • /
    • 2001
  • Ginkgo biliba has been used for bronchitis and asthma in oriental countries and its leaf extract(GBE) contains 24% ginkgoflavone glycoside and 6% terpenoid. Flavonoids and terpenoids are known to have various antioxidant effects such as scavenging of free radicals and chelation of transtional metals. Antioxidant effect of GBE against 1,2,4-benzenetriol(BT), one of toxic metabolites of benzene, was demonstrated throughbsister chromatid exchange(SCE) analysis, single cell gel electrophoresis(SCGE) analysis, DNA cleavage assay and lipid peroxidation production analysis. The means of SCE frequencies at 10, 25 and 50$\mu$M concentration of BT were 7.72, 8.02, 9.22 respectively. In addition of GBE with concentration of 50, 200 and 500$\mu\textrm{g}$/$m\ell$, SCE frequencies were decreased significantly.(p<0.05) According to SCGE analysis, BT induced DNA damage in a dose-dependent manner at concentration of 10 and 50 $\mu$m and the DNA damage induced by BT was significantly protected by GBE(p<0.001). No genotoxicity was observed by GBE treatment alone on DNA cleavage. The effect of BT on lipid peroxidation product, Malondiadehyde(MDA), was increased with concentration of BT(10 and 50 $\mu$M) and reduction in MDA was noted when GBE was added. From above results it is suggested that GBE could protect the cell and DNA from pro-oxidant effect by reactive oxigen species induced by BT.

  • PDF

Detection of DNA Damage in Carp Using Single-Cell Gel Electrophoresis Assay for Genotoxicity Monitoring

  • Jin, Hai-Hong;Lee, Jae-Hyung;Hyun, Chang-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.268-275
    • /
    • 2004
  • To investigate the potential application of the single-cell gel electrophoresis (SCGE) assay to carp as an aquatic pollution monitoring technique, gill, liver, and blood cells were isolated from carp exposed to a direct-acting mutagen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), or indirect mutagen, $benzo[\alpha]pyrene$ $(B[\alpha]P)$, then the DNA strand breakage was analyzed using the assay. Based on testing 5 different cell isolation methods and 6 electrophoretic conditions, the optimized assay conditions were found to be cell isolation by filter pressing and electrophoresis at a lower voltage and longer running time (at 0.4 V/cm for 40 min). In preliminary experiments, gill and liver cells isolated from carp exposed to MNNG in vitro exhibited DNA damage signals even with 0.5 ppb exposure, which is a much higher dose than previously reported. In the gill cells isolated from carp exposed to 0.01-0.5 ppm MNNG in vivo, significant dose-and time-dependent increases were observed in the tail for 4 days. As such, the linear correlation between the relative damage index (RDI) values and time for each dose based on the initial 48-h exposure appeared to provide effective criteria for the genotoxicity monitoring of direct-acting mutagenic pollution. In contrast, the in vivo exposure of carp to 0.25-1.0 ppm of $B[\alpha]P$ for 7 days resulted in dose-and time-dependent responses in the liver cells, in which 24-h delayed responses for metabolizing activation and gradual repair after 48 h were also observed. Thus, the negative-sloped linear correlation between the RDI and time at each dose based on the initial 48 h appeared to provide more effective criteria for the genotoxicity monitoring of indirect mutagenic pollution.

Protective Effects of Paeonia japonica against Radiation-induced Damage (방사선 장해에 대한 백작약의 방호효과)

  • Oh, Heon;Park, Hae-Ran;Jeong, Ill-Yun;Kim, Sung-Ho;Jo, Sung-Kee
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.181-188
    • /
    • 2002
  • We investigated the effect of Paeonia japonica (PJ) on radiation-induced oxidative damage to macromolecules in vitro and in vivo. The PJ reduced the tail moment (TM) which was a marker of DNA strand break in single-cell gel electrophoresis (SCGE; comet assay) in the human peripheral blood lymphocytes. Lipid peroxidation in the liver of the ICR mouse, measured as malondialdehyde (MDA), was also reduced by PJ administration. Ethanol fraction of PJ was more effective than polysaccharide fraction of that on reduction of TM in SCGE and lipid peroxidation. Also, Their activities to scavenge DPPH radicals and hydroxyl radicals were observed in vitro, and the activities were due to its ethanol fraction. It is plausible that scavenging of flee radicals by PJ extract may have played an important role in providing the protection against the radiation-induced damage. These results indicated that Paeonia japonica might be a useful radioprotector, especially since it is a relatively nontoxic natural product.

Assessment of DNA damage and Chromosome aberration in human lymphocyte exposed to low dose radiation detected by FISH(fluorescence in situ hybridization) and SCGE(single cell gel electrophoresis) (FISH기법 및 단세포전기영동기법을 이용한 저선량 방사선에 의한 DNA 상해 및 염색체이상 평가)

  • Chung, Hai-Won;Kim, Su-Young;Kim, Byung-Mo;Kim, Sun-Jin;Kim, Tae-Hwan;Cho, Chul-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.4
    • /
    • pp.223-232
    • /
    • 2000
  • Comparative study was performed for the assessment of DNA damage and Chromosomal aberration in human lymphocyte exposed to low dose radiation using fluorescence in situ hybridization(FISH) and single cell gel electrophoresis(SCGE). Chromosomal aberrations in human lymphocytes exposed to radiation at doses of 5, 10, 30 and 50cGy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. FISH with chromosome-specific probe has been used to be a valid and rapid method fer detection of chromosome rearrangements induced by low dose radiation. The frequencies of stable translocation per cell equivalents were 0.0116, 0.0375, 0.040f, 0.0727 and 0.0814 for 0, 5, 10, 30 and 50cGy, respectively, and those of dicentric were 0.00, 0.0125, 0.174, 0.0291 and 0.0407 respectively. Radiation induced DNA damage in human lymphocyte in a dose-dependent manner at low doses from 5cGy to 50cGy, which were analysed by single tell gel electrophoresis(SCGE). From above results, FISH seemed to be useful for radiation biodosimetry by which the frequencies of stable aberrations in human lymphocyte can be observed more easily than by conventional method and SCGE also seemed to be sensitive method f9r detecting DNA damage by low dose radiation exposure, so that those methods will improve our technique to perform meaningful biodosimetry for radiation at low doses.

  • PDF

PROTECTION OF DNA BY SCUTELLARlA BAICALENSIS IN HL-60 CELLS EXPOSED TO $\gamma$-RAYS; ANALYSED BY MICRONUCLEI FORMATION AND SINGLE CELL GELL ELECTROPHORESIS

  • Heon Oh;Park, Hae-Ran;Ham, Yeon-Ho;Kim, Sung-Ho;Jo, Sung-Kee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.107-107
    • /
    • 2001
  • In the present study, the protective effect of Scutellaria baicalensis against DNA damage in HL-60 cells exposed to $^{60}$ Co ${\gamma}$-rays was evaluated using micronuclei formation and alkaline single cell gel electrophoresis (SCGE, comet assay). The frequency of micronuclei was decreased in groups treated with water extract (P<0.01), polysaccaride fraction (P<0.01) and methanol fraction (P<0.01) before/after exposure to 200 cGy of ${\gamma}$-rays.(omitted)

  • PDF

Free Radical Involvement in the DNA Damaging Activity of Fumonisin Bl

  • Lee, Wan-Hee;Lee, Kil-Soo
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.249-253
    • /
    • 2001
  • Fumonisin B1, a mycotoxin, is thought to induce esophageal cancer in humans and apoptosis in animal cells by inhibiting ceramide synthase. Dumonisin Bl may also generate reactive oxygen species directly or indirectly, leading to DNA damage and lipid peroxidation. In this study, a DNA fragmentation assay, dichlorofluorescein (DCF) analysis, and single cell gel electrophoresis (SCGE) were used to investigate the involvement of cellular free radicals, specifically hydrogen peroxide, in the DNA damaging activity of fumonisin B1. From an in vitro DNA fragmentation assay, E. coli DNA, damage by fumonisin Bl was increased by the addition of superxide dismutase (SOD) and decreased by catalase. SCGE and DCF analysis in vivo showed that the nuclear DNA damage and intracellular free radicals in cultured rat hepatocytes treated with fumonisin B1 were increased with the concentration of fumonisin Bl . DNA damage and free radical generation were inhibited by the addition of catalase. Fumonisin Bl , in the presence of SOD, produces hydrogen peroxide causing oxidative DNA damage and protein malfunction, leading to genotoxicity and cytotoxicity of the toxin.

  • PDF