• Title/Summary/Keyword: single nucleotide polymorphism(SNP)

Search Result 570, Processing Time 0.027 seconds

Effects of ATP2B1 Variants on the Systolic and Diastolic Blood Pressure according to the Degree of Obesity in the South Korean Population (한국인에게서 ATP2B1 유전 변이가 비만 정도에 따른 수축기 혈압과 이완기 혈압에 미치는 영향)

  • Kim, Gi Tae;Kim, In Sik;Jee, Sun Ha;Sull, Jae Woong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.45-52
    • /
    • 2020
  • Hypertension often leads to cardiovascular disease and kidney disease, and hypertention is an important worldwide problem. Body mass index (BMI) has an important role for raising blood pressure. Further, hypertension can be affected by both environmental factors and genetic factors. Many single nucleotide polymorphisms have been associated with hypertension. Genome wide association study (GWAS) is a method of confirming a new locus of increasing the risk of disease, and GWAS has confirmed several single nucleotide polymorphisms (SNPs) that are associated with high blood pressure. This study analyzed the relationship between systolic blood pressure, diastolic blood pressure and SNP of the ATP2B1 gene in 994 Koreans. SNPs that showed the highest statistical significance with systolic and diastolic blood pressures were selected on the multiple linear regression analysis. One-way analysis of variance for systolic and diastolic blood pressures was performed, and multiple logistic regression analysis was performed on the risk of hypertension. The P values were two-tailed, and P<0.05 was considered significant. Four SNPs were associated with systolic blood pressure and six SNPs were associated with diastolic blood pressure. In addition, a genotype-based analysis showed significant odds ratios for the risk of hypertension in older men (adjusted OR, 5.743; 95% CI, 1.173~28.121; P=0.031). This study suggests that the ATP2B1 variants affect both the systolic and diastolic blood pressure.

Thoroughbred Horse Single Nucleotide Polymorphism and Expression Database: HSDB

  • Lee, Joon-Ho;Lee, Taeheon;Lee, Hak-Kyo;Cho, Byung-Wook;Shin, Dong-Hyun;Do, Kyoung-Tag;Sung, Samsun;Kwak, Woori;Kim, Hyeon Jeong;Kim, Heebal;Cho, Seoae;Park, Kyung-Do
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1236-1243
    • /
    • 2014
  • Genetics is important for breeding and selection of horses but there is a lack of well-established horse-related browsers or databases. In order to better understand horses, more variants and other integrated information are needed. Thus, we construct a horse genomic variants database including expression and other information. Horse Single Nucleotide Polymorphism and Expression Database (HSDB) (http://snugenome2.snu.ac.kr/HSDB) provides the number of unexplored genomic variants still remaining to be identified in the horse genome including rare variants by using population genome sequences of eighteen horses and RNA-seq of four horses. The identified single nucleotide polymorphisms (SNPs) were confirmed by comparing them with SNP chip data and variants of RNA-seq, which showed a concordance level of 99.02% and 96.6%, respectively. Moreover, the database provides the genomic variants with their corresponding transcriptional profiles from the same individuals to help understand the functional aspects of these variants. The database will contribute to genetic improvement and breeding strategies of Thoroughbreds.

Genome re-sequencing to identify single nucleotide polymorphism markers for muscle color traits in broiler chickens

  • Kong, H.R.;Anthony, N.B.;Rowland, K.C.;Khatri, B.;Kong, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • Objective: Meat quality including muscle color in chickens is an important trait and continuous selective pressures for fast growth and high yield have negatively impacted this trait. This study was conducted to investigate genetic variations responsible for regulating muscle color. Methods: Whole genome re-sequencing analysis using Illumina HiSeq paired end read method was performed with pooled DNA samples isolated from two broiler chicken lines divergently selected for muscle color (high muscle color [HMC] and low muscle color [LMC]) along with their random bred control line (RAN). Sequencing read data was aligned to the chicken reference genome sequence for Red Jungle Fowl (Galgal4) using reference based genome alignment with NGen program of the Lasergene software package. The potential causal single nucleotide polymorphisms (SNPs) showing non-synonymous changes in coding DNA sequence regions were chosen in each line. Bioinformatic analyses to interpret functions of genes retaining SNPs were performed using the ingenuity pathways analysis (IPA). Results: Millions of SNPs were identified and totally 2,884 SNPs (1,307 for HMC and 1,577 for LMC) showing >75% SNP rates could induce non-synonymous mutations in amino acid sequences. Of those, SNPs showing over 10 read depths yielded 15 more reliable SNPs including 1 for HMC and 14 for LMC. The IPA analyses suggested that meat color in chickens appeared to be associated with chromosomal DNA stability, the functions of ubiquitylation (UBC) and quality and quantity of various subtypes of collagens. Conclusion: In this study, various potential genetic markers showing amino acid changes were identified in differential meat color lines, that can be used for further animal selection strategy.

In silico approaches to discover the functional impact of non-synonymous single nucleotide polymorphisms in selective sweep regions of the Landrace genome

  • Shin, Donghyun;Won, Kyung-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1980-1990
    • /
    • 2018
  • Objective: The aim of this study was to discover the functional impact of non-synonymous single nucleotide polymorphisms (nsSNPs) that were found in selective sweep regions of the Landrace genome Methods: Whole-genome re-sequencing data were obtained from 40 pigs, including 14 Landrace, 16 Yorkshire, and 10 wild boars, which were generated with the Illumina HiSeq 2000 platform. The nsSNPs in the selective sweep regions of the Landrace genome were identified, and the impacts of these variations on protein function were predicted to reveal their potential association with traits of the Landrace breed, such as reproductive capacity. Results: Total of 53,998 nsSNPs in the mapped regions of pigs were identified, and among them, 345 nsSNPs were found in the selective sweep regions of the Landrace genome which were reported previously. The genes featuring these nsSNPs fell into various functional categories, such as reproductive capacity or growth and development during the perinatal period. The impacts of amino acid sequence changes by nsSNPs on protein function were predicted using two in silico SNP prediction algorithms, i.e., sorting intolerant from tolerant and polymorphism phenotyping v2, to reveal their potential roles in biological processes that might be associated with the reproductive capacity of the Landrace breed. Conclusion: The findings elucidated the domestication history of the Landrace breed and illustrated how Landrace domestication led to patterns of genetic variation related to superior reproductive capacity. Our novel findings will help understand the process of Landrace domestication at the genome level and provide SNPs that are informative for breeding.

The ABCG2 Polymorphism rs2725220 Is Associated with Hyperuricemia in the Korean Population

  • Sull, Jae Woong;Yang, Seung-Ju;Kim, Soriul;Jee, Sun Ha
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.231-235
    • /
    • 2014
  • Elevated serum uric acid levels are associated with a variety of adverse health outcomes, including gout, hypertension, diabetes mellitus, metabolic syndrome, and cardiovascular diseases. Several genome-wide association studies on uric acid levels have implicated the ATP-binding cassette, subfamily G, member 2 (ABCG2) gene as being possibly causal. We investigated an association between the single-nucleotide polymorphism (SNP) rs2725220 in the ABCG2 gene and uric acid levels in the Korean population. A total of 991 subjects in Seoul City were used for a replication study with ABCG2 SNP rs2725220. The rs2725220 SNP in the ABCG2 gene was associated with mean uric acid levels (effect per allele 0.25 mg/dL, p < 0.0001). Subjects with the GC/CC genotype had a 1.78-fold (range, 1.22- to 2.62-fold) higher risk of having abnormal uric acid levels (${\geq}7.0mg/dL$) than subjects with the GG genotype. When analyzed by gender, the association with ABCG2 was stronger in men than in women. The association with ABCG2 was much stronger in male subjects with body mass index (BMI) ${\geq}26.4$ (odds ratio, 5.09; 95% confidence interval, 2.41 to 10.8) than in male subjects with BMI < 26.4. This study clearly demonstrates that genetic variations in ABCG2 influence uric acid levels in Korean adults.

SNP discovery and applications in Brassica napus

  • Hayward, Alice;Mason, Annaliese S.;Dalton-Morgan, Jessica;Zander, Manuel;Edwards, David;Batley, Jacqueline
    • Journal of Plant Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.49-61
    • /
    • 2012
  • This review summarises the biology, discovery and applications of single nucleotide polymorphisms in complex polyploid crop genomes, with a focus on the important oilseed crop $Brassica$ $napus$. $Brassica$ $napus$ is an allotetraploid species, and along with soybean and oil palm is one of the top three most important oilseed crops globally. Current efforts are well underway to $de$ $novo$ assemble the $B.$ $napus$ genome, following the release of the related $B.$ $rapa$ 'A' genome last year. The next generation of genome sequencing, SNP discovery and analysis pipelines, and the associated challenges for this work in $B.$ $napus$, will be addressed. The biological applications of SNP technology for both evolutionary and molecular geneticists as well as plant breeders and industry are far-reaching, and will be invaluable to our understanding and advancement of the $Brassica$ crop species.

Association of CYP2E1, STK15 and XRCC1 Polymorphisms with Risk of Breast Cancer in Malaysian Women

  • Chong, Eric Tzyy Jiann;Goh, Lucky Poh Wah;See, Edwin Un Hean;Chuah, Jitt Aun;Chua, Kek Heng;Lee, Ping-Chin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.647-653
    • /
    • 2016
  • Background: Breast cancer is the most common type of cancer affecting Malaysian women. Recent statistics revealed that the cumulative probability of breast cancer and related deaths in Malaysia is higher than in most of the countries of Southeast Asia. Single nucleotide polymorphisms (SNPs) in CYP2E1 (rs6413432 and rs3813867), STK15 (rs2273535 and rs1047972) and XRCC1 (rs1799782 and rs25487) have been associated with breast cancer risk in a meta-analysis but any link in Southeast Asia, including Malaysia, remained to be determined. Hence, we investigated the relationship between these SNPs and breast cancer risk among Malaysian women in the present case-control study. Materials and Methods: Genomic DNA was isolated from peripheral blood of 71 breast cancer patients and 260 healthy controls and subjected to polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Results: Our study showed that the c1/c2 genotype or subjects with at least one c2 allele in CYP2E1 rs3813867 SNP had significantly increased almost 1.8-fold higher breast cancer risk in Malaysian women overall. In addition, the variant Phe allele in STK15 rs2273535 SNP appeared to protect against breast cancer in Malaysian Chinese. No significance association was found between XRCC1 SNPs and breast cancer risk in the population. Conclusions: This study provides additional knowledge on CYP2E1, STK15 and XRCC1 SNP impact of risk of breast cancer, particularly in the Malaysian population. From our findings, we also recommend Malaysian women to perform breast cancer screening before 50 years of age.

The relationship between the variants in the 5'-untranslated regions of equine chorionic gonadotropin genes and serum equine chorionic gonadotropin levels

  • Liu, ShuQin;Lian, Song;Yang, YunZhou;Fu, ChunZheng;Ma, HongYing;Xiong, ZhiYao;Ling, Yao;Zhao, ChunJiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1679-1683
    • /
    • 2017
  • Objective: An experiment was conducted to study the association between the single nucleotide polymorphisms (SNPs) in 5'-untranslated regions (5'-UTR) of equine chorionic gonadotropin (eCG) genes and the serum eCG levels. Methods: SNPs in 5'-UTR of eCG genes were screened across 10 horse breeds, including 7 Chinese indigenous breeds and 3 imported breeds using iPLEX chemistry, and the association between the serum eCG levels of 174 pregnant Da'an mares and their serum eCG levels (determined with ELISA) was analyzed. Results: Four SNPs were identified in the 5'-UTR of the $eCG{\alpha}$ gene, and one of them was unique in the indigenous breeds. There were 2 SNPs detected at the 5' end of the $eCG{\beta}$ subunit gene, and one of them was only found in the Chinese breeds. The SNP g.39948246T>C at the 5'-UTR of $eCG{\alpha}$ was associated significantly with eCG levels of 75-day pregnant mare serum (p<0.05) in Da'an mares. Prediction analysis on binding sites of transcription factors showed that the g.39948246T>C mutation causes appearance of the specific binding site of hepatocyte nuclear factor 3 forkhead homolog 2 (HFH-2), which is a transcriptional repressor belonging to the forkhead protein family of transcription factors. Conclusion: The SNP g.39948246T>C at the 5'-UTR of $eCG{\alpha}$ is associated with eCG levels of 75-day pregnant mare serum (p<0.05).

Development of HRM Markers Based on Identification of SNPs from Next-Generation Sequencing of Sanguisorba officinalis, Sanguisorba tenuifolia f. alba (Trautv. & Mey.) Kitam and Sanguisorba tenuifolia Fisch. ex Link (오이풀, 흰오이풀, 긴오이풀의 NGS 기반 유전체 서열의 완전 해독 및 차세대 염기서열 재분석으로 탐색된 SNP 기반 HRM 분자표지 개발)

  • Sim, Mi-Ok;Jang, Ji Hun;Jung, Ho-Kyung;Hwang, Taeyeon;Kim, Sunyoung;Cho, Hyun-Woo
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.91-97
    • /
    • 2019
  • Objective : To establish a reliable tool between for the distinction of original plants of Sanguisorbae Radix, we analyzed the complete chloroplast genome sequence of Sanguisorbae Radix and identified single nucleotide polymorphisms (SNPs). Materials and methods : The chloroplast genome sequence of Sanguisorba officinalis, Sanguisorba tenuifolia f. alba (Trautv. & Mey.) Kitam and Sanguisorba tenuifolia Fisch. ex Link obtained using next-generation sequencing technology were described and compared with those of other species to develop specific markers. Candidate genetic markers were identified to distinguish species from the chloroplast sequences of each species using Modified Phred Phrap Consed and CLC Genomics Workbench programs. Results : The structure of the chloroplast genome of each sample that had been assembled and verified was circular, and the length was about 155 kbp. Through comparative analysis of the chloroplast sequences, we found 220 nucleotides, 158 SNPs, and 62 Indel (insertion and/or deletion), to distinguish Sanguisorba officinalis, Sanguisorba tenuifolia f. alba (Trautv. & Mey.) Kitam and Sanguisorba tenuifolia Fisch. ex Link. Finally, 15 specific SNP genetic markers were selected for the verification at positions. Avaliable primers for the dried herb, which is used as medicine, were used to develop the PCR amplification product of Sanguisorbae Radix to assess the applicability of PCR analysis. Conclusion : In this study, we found that Fendel-qPCR analysis based on the chloroplast DNA sequences can be an efficient tool for discrimination of Sanguisorba officinalis, Sanguisorba tenuifolia f. alba (Trautv. & Mey.) Kitam and Sanguisorba tenuifolia Fisch. ex Link.

Gene Set Analyses of Genome-Wide Association Studies on 49 Quantitative Traits Measured in a Single Genetic Epidemiology Dataset

  • Kim, Jihye;Kwon, Ji-Sun;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.11 no.3
    • /
    • pp.135-141
    • /
    • 2013
  • Gene set analysis is a powerful tool for interpreting a genome-wide association study result and is gaining popularity these days. Comparison of the gene sets obtained for a variety of traits measured from a single genetic epidemiology dataset may give insights into the biological mechanisms underlying these traits. Based on the previously published single nucleotide polymorphism (SNP) genotype data on 8,842 individuals enrolled in the Korea Association Resource project, we performed a series of systematic genome-wide association analyses for 49 quantitative traits of basic epidemiological, anthropometric, or blood chemistry parameters. Each analysis result was subjected to subsequent gene set analyses based on Gene Ontology (GO) terms using gene set analysis software, GSA-SNP, identifying a set of GO terms significantly associated to each trait ($p_{corr}$ < 0.05). Pairwise comparison of the traits in terms of the semantic similarity in their GO sets revealed surprising cases where phenotypically uncorrelated traits showed high similarity in terms of biological pathways. For example, the pH level was related to 7 other traits that showed low phenotypic correlations with it. A literature survey implies that these traits may be regulated partly by common pathways that involve neuronal or nerve systems.