DOI QR코드

DOI QR Code

Effects of ATP2B1 Variants on the Systolic and Diastolic Blood Pressure according to the Degree of Obesity in the South Korean Population

한국인에게서 ATP2B1 유전 변이가 비만 정도에 따른 수축기 혈압과 이완기 혈압에 미치는 영향

  • Kim, Gi Tae (Department of Senior Healthcare, General Graduate School, Eulji University) ;
  • Kim, In Sik (Department of Senior Healthcare, General Graduate School, Eulji University) ;
  • Jee, Sun Ha (Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University) ;
  • Sull, Jae Woong (Department of Senior Healthcare, General Graduate School, Eulji University)
  • 김기태 (을지대학교 대학원 시니어헬스케어학과) ;
  • 김인식 (을지대학교 대학원 시니어헬스케어학과) ;
  • 지선하 (연세대학교 보건대학원 역학건강증진학과) ;
  • 설재웅 (을지대학교 대학원 시니어헬스케어학과)
  • Received : 2019.11.22
  • Accepted : 2020.02.18
  • Published : 2020.03.31

Abstract

Hypertension often leads to cardiovascular disease and kidney disease, and hypertention is an important worldwide problem. Body mass index (BMI) has an important role for raising blood pressure. Further, hypertension can be affected by both environmental factors and genetic factors. Many single nucleotide polymorphisms have been associated with hypertension. Genome wide association study (GWAS) is a method of confirming a new locus of increasing the risk of disease, and GWAS has confirmed several single nucleotide polymorphisms (SNPs) that are associated with high blood pressure. This study analyzed the relationship between systolic blood pressure, diastolic blood pressure and SNP of the ATP2B1 gene in 994 Koreans. SNPs that showed the highest statistical significance with systolic and diastolic blood pressures were selected on the multiple linear regression analysis. One-way analysis of variance for systolic and diastolic blood pressures was performed, and multiple logistic regression analysis was performed on the risk of hypertension. The P values were two-tailed, and P<0.05 was considered significant. Four SNPs were associated with systolic blood pressure and six SNPs were associated with diastolic blood pressure. In addition, a genotype-based analysis showed significant odds ratios for the risk of hypertension in older men (adjusted OR, 5.743; 95% CI, 1.173~28.121; P=0.031). This study suggests that the ATP2B1 variants affect both the systolic and diastolic blood pressure.

고혈압은 종종 심혈관 질환 및 신장 질환으로 이어지며 전 세계적으로 중요한 문제이다. 유전적으로 많은 단일 염기 다형성이 고혈압과 관련이 있다. 많은 GWAS 연구에서 ATP2B1 유전자가 혈압과 연관성이 높다는 것을 발견했다. 본 연구에서는 한국인 994명을 대상으로 수축기 혈압, 이완기 혈압과 ATP2B1 유전자의 SNP와 연관성을 분석하였다. 또한, BMI수치에 따라 하위그룹으로 계층화하여 차이가 있는지 확인하고자 하였다. 다중선형회귀분석에서 수축기 혈압 및 이완기 혈압과 가장 높은 통계적 유의성을 보인 SNP를 선정하였다. 수축기 혈압과 이완기 혈압에서의 one-way analysis of variance를 시행하였고, 고혈압 발생 위험에 대한 다중로지스틱회귀분석을 시행하였다. 다중로지스틱회귀분석은 연령 기준으로 구분하여 시행하였으며, 연령, BMI, 공복 시 혈당을 통제한 방법에서 비교하였다. 수축기 혈압에서는 4개의 SNP (rs10506974, rs7136259, rs17249754, rs17836882)가, 이완기 혈압에서는 6개의 SNP(rs10506974, rs10777237, rs7136259, rs17249754, rs1371075, rs10506983)가 유의하게 관련성을 보였다. 추가적으로, 유전자형(genotype)에 따른 분석에서는 남성에게서 고혈압 위험에 대한 유의한 odd ratio 값을 보였다. 본 연구는 ATP2B1 다형성이 수축기 혈압과 이완기 혈압에 영향을 미치는 것을 제안한다.

Keywords

References

  1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, et al. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217-223. https://doi.org/10.1016/S0140-6736(05)17741-1
  2. Carretero OA, Oparil S. Essential hypertension. Part I: definition and etiology. Circulation. 2000;101:329-335. https://doi.org/10.1161/01.cir.101.3.329
  3. Gros R, Afroze T, You XM, Kabir G, Van Wert R, et al. Plasma membrane calcium ATPase overexpression in arterial smooth muscle increases vasomotor responsiveness and blood pressure. Circ Res. 2003;93:614-621. https://doi.org/10.1161/01.RES.0000092142.19896.D9
  4. Whelton PK, He J, Appel LJ, Cutler JA, Havas S, et al. Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. JAMA. 2002;288: 1882-1888. https://doi.org/10.1001/jama.288.15.1882
  5. Strazzullo P, D'Elia L, Kandala NB, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339:b4567. https://doi.org/10.1136/bmj.b4567
  6. Taylor J, Sun YV, Chu J, Mosley TH, Kardia SL. Interactions between metallopeptidase 3 polymorphism rs679620 and BMI in predicting blood pressure in African-American women with hypertension. J Hypertens. 2008;26:2312-2318. https://doi.org/10.1097/HJH.0b013e3283110402
  7. Nelson HD. Menopause. Lancet. 2008;371:760-770. https://doi.org/10.1016/S0140-6736(08)60346-3
  8. Korean CDC. Survey for the postmenopausal women symptom and behavior. Final report; 2013.
  9. Natekar A, Olds RL, Lau MW, Min K, Imoto K, et al. Elevated blood pressure: our family's fault? The genetics of essential hypertension. World J Cardiol. 2014;6:327-337. https://doi.org/10.4330/wjc.v6.i5.327
  10. Heo SG, Hwang JY, Uhmn S, Go MJ, Oh B, et al. Male-specific genetic effect on hypertension and metabolic disorders. Hum Genet. 2014;133:311-319. https://doi.org/10.1007/s00439-013-1382-4
  11. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527-534. https://doi.org/10.1038/ng.357
  12. Nakagami H. Evaluation of the genetic risk of hypertension-related diseases. Circ J. 2015;79:756-757. https://doi.org/10.1253/circj.CJ-15-0178
  13. Fu L, Zhang M, Hu YQ, Zhao X, Cheng H, et al. Gene-gene interactions and associations of six hypertension related single nucleotide polymorphisms with obesity risk in a Chinese children population. Gene. 2018;679:320-327. https://doi.org/10.1016/j.gene.2018.09.019
  14. Nam GE, Park HS. Perspective on diagnostic criteria for obesity and abdominal obesity in Korean adults. J Obes Metab Syndr. 2018;27:134-142. https://doi.org/10.7570/jomes.2018.27.3.134
  15. Seo MH, Lee WY, Kim SS, Kang JH, Kang JH, Kim KK, et al. 2018 Korean Society for the Study of Obesity Guideline for the Management of Obesity in Korea. J ObesMetabSyndr. 2016;28:40-45. https://doi.org/10.7570/jomes.2019.281.1.40
  16. Strehler EE, Zacharias DA. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev. 2001;81:21-50. https://doi.org/10.1152/physrev.2001.81.1.21
  17. Brini M, Carafoli E, Cali T. The plasma membrane calcium pumps: focus on the role in (neuro)pathology. Biochem Biophys Res Commun. 2017;483:1116-1124. https://doi.org/10.1016/j.bbrc.2016.07.117
  18. Pande J, Mallhi KK, Sawh A, Szewczyk MM, Simpson F, et al. Aortic smooth muscle and endothelial plasma membrane Ca2+ pump isoforms are inhibited differently by the extracellular inhibitor caloxin 1b1. Am J Physiol Cell Physiol. 2006;290: C1341-1349. https://doi.org/10.1152/ajpcell.00573.2005
  19. Cartwright EJ, Oceandy D, Austin C, Neyses L. Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps. Sci China Life Sci. 2011;54:691-698. https://doi.org/10.1007/s11427-011-4199-1
  20. Lu X, Wang L, Lin X, Huang J, Charles Gu C, et al. Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum Mol Genet. 2015;24:865-874. https://doi.org/10.1093/hmg/ddu478
  21. Kelly TN, Takeuchi F, Tabara Y, Edwards TL, Kim YJ, et al. Genome-wide association study meta-analysis reveals transethnic replication of mean arterial and pulse pressure loci. Hypertension. 2013;62:853-859. https://doi.org/10.1161/HYPERTENSIONAHA.113.01148
  22. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43:531-538. https://doi.org/10.1038/ng.834
  23. Lu X, Wang L, Chen S, He L, Yang X, et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet. 2012;44:890-894. https://doi.org/10.1038/ng.2337
  24. Fontana V, McDonough CW, Gong Y, El Rouby NM, Si AC, et al. Large-scale gene-centric analysis identifies polymorphisms for resistant hypertension. J Am Heart Assoc. 2014;3:E001398. https://doi.org/10.1161/JAHA.114.001398
  25. Xu J, Qian HX, Hu SP, Liu LY, Zhou M, et al. Gender-Specific association of ATP2B1 variants with susceptibility to essential hypertension in the Han Chinese population. Biomed Res Int. 2016;2016:1910565. https://doi.org/10.1155/2016/1910565.
  26. Tabara Y, Kohara K, Kita Y, Hirawa N, Katsuya T, et al. Common variants in the ATP2B1 gene are associated with susceptibility to hypertension: the Japanese Millennium Genome Project. Hypertension. 2010;56:973-980. https://doi.org/10.1161/HYPERTENSIONAHA.110.153429
  27. Park JB, Uhmm S, Shin C, Cho NH, Cho YS, et al. Genome-wide association analyses on blood pressure using three different phenotype definitions. Genomics & Informatics. 2010;8:108-115. https://doi.org/10.5808/gi.2010.8.3.108
  28. Hong KW, Go MJ, Jin HS, Lim JE, Lee JY, et al. Genetic variations in ATP2B1, CSK, ARSG and CSMD1 loci are related to blood pressure and/or hypertension in two Korean cohorts. J Hum Hypertens. 2010;24:367-372. https://doi.org/10.1038/jhh.2009.86
  29. Lee S, Kim SH, Shin C. Interaction according to urinary sodium excretion level on the association between ATP2B1 rs17249754 and incident hypertension: the Korean genome epidemiology study. Clin Exp Hypertens. 2016;38:352-358. https://doi.org/10.3109/10641963.2015.1116544