References
- Bu T, Liu L, Sun Y, et al (2014). XRCC1 Arg399Gln polymorphism confers risk of breast cancer in American population: a meta-analysis of 10846 cases and 11723 controls. PLos ONE, 9, 86086. https://doi.org/10.1371/journal.pone.0086086
- Chong ETJ, Lee CC, Chua KH, Chuah JA, Lee PC (2014). RsaI but not DraI polymorphism in CYP2E1 gene increases the risk of gastrointestinal cancer in Malaysians: a case-control study. BMJ Open, 4, 4109.
- Cox DG, Hankinson SE, Hunter DJ (2006). Polymorphisms of the AURKA (STK15/Aurora kinase) gene and breast cancer risk (United States). Cancer Causes Control, 17, 81-3. https://doi.org/10.1007/s10552-005-0429-9
- Dai ZJ, Kang HF, Wang XJ, et al (2014). Association between genetic polymorphisms in AURKA (rs2273535 and rs1047972) and breast cancer risk: a meta-analysis involving 37,221 subjects. Cancer Cell Int, 14, 91. https://doi.org/10.1186/s12935-014-0091-y
- Ding PJ, Yang Y, Cheng LY, et al (2014). The relationship between seven common polymorphisms from five DNA repair genes and the risk for breast cancer in Northern Chinese women. PLoS ONE, 9, 92083. https://doi.org/10.1371/journal.pone.0092083
- Ewart-Toland A, Dai Q, Gao YT, et al (2005). Aurora-A/STK15 T+91A is a general low penetrance cancer susceptibility gene:a meta-analysis of multiple cancer types. Carcinogenesis, 26, 1368-73. https://doi.org/10.1093/carcin/bgi085
- Feng YZ, Liu YL, He XF, et al (2014). Association between the XRCC1 Arg194Trp polymorphism and risk of cancer: evidence from 201 case-control studies. Tumor Biol, 35, 10677-97. https://doi.org/10.1007/s13277-014-2326-x
- Fletcher O, Johnson N, Palles C, et al (2006). Inconsistent association between the STK15 F31I genetic polymorphism and breast cancer risk. J Natl Cancer Inst, 98, 1014-8. https://doi.org/10.1093/jnci/djj268
- Forouzanfar MH, Foreman KJ, Delossantos AM, et al (2011). Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet, 378, 1461-84. https://doi.org/10.1016/S0140-6736(11)61351-2
- Goh LPW, Chong ETJ, Chua KH, Chuah JA, Lee PC (2014). Significant genotype difference in the CYP2E1 PstI polymorphism of indigenous groups in Sabah, Malaysia with Asian and non-Asian populations. Asian Pac J Cancer Prev, 15, 7377-81. https://doi.org/10.7314/APJCP.2014.15.17.7377
- Guengerich FP, Kim DH, Iwasaki M (1991). Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol, 4, 168-79. https://doi.org/10.1021/tx00020a008
- Guo XG, Zheng L, Feng WB, Xia Y (2014). The AURKA gene rs2273535 polymorphism contributes to breast carcinoma risk - meta-analysis of eleven studies. Asian Pac J Cancer Prev, 15, 6709-14. https://doi.org/10.7314/APJCP.2014.15.16.6709
- Higgins MJ, Baselga J (2011). Targeted therapies for breast cancer. J Clin Invest, 121, 3797-803. https://doi.org/10.1172/JCI57152
- Hisham AN, Yip CH (2004). Overview of breast cancer in Malaysian women: a problem with late diagnosis. Asian J Surg, 27, 130-3. https://doi.org/10.1016/S1015-9584(09)60326-2
- Hutchinson L (2010). Breast cancer: challenges, controversies, breakthroughs. Nat Rev Clic Oncol, 7, 669-70. https://doi.org/10.1038/nrclinonc.2010.192
- Khedhaier A, Hassen E, Bouaouina N, et al (2008). Implication of xenobiotic metabolizing enzyme gene (CYP2E1, CYP2C19, CYP2D6, mEH and NAT2) polymorphisms in breast carcinoma. BMC Cancer, 8, 109. https://doi.org/10.1186/1471-2407-8-109
- Kubota Y, Nash RA, Klungland A, et al (1996). Reconstitution of DNA base excision-repair with purified human protein: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J, 15, 6662-70.
- Leong BDK, Chuah JA, Kumar VM, Yip CH (2007). Breast cancer in Sabah, Malaysia: a two year prospective study. Asian Pac J Cancer Prev, 8, 525-9.
- Leung T, Rajendran R, Singh S, et al (2013). Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells. Breast Cancer Res, 15, R107. https://doi.org/10.1186/bcr3574
- Lim GCC, Yahaya H (2004). Second report of the national cancer incidence in Malaysia. National Cancer Registry Press, Kuala Lumpur, 47-8.
- Liu Y, He XF, Lu YT, et al (2013). Association between the XRCC1 Arg399Gln polymorphism and risk of cancer: evidence from 297 case-control studies. PLoS ONE, 8, 78071. https://doi.org/10.1371/journal.pone.0078071
- Liu ZQ, Zhang XS, Zhang SH (2014). Breast tumor subgroups reveal diverse clinical prognostic power. Sci Rep, 4, 4002.
- Malhotra GK, Zhao XS, Band H, Band V (2010). Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther, 10, 955-60. https://doi.org/10.4161/cbt.10.10.13879
- Mangia A, Malfettone A, Simone G, Darvishian F (2011). Old and new concepts in histopathological characterization of familial breast cancer. Ann Oncol, 22, 24-30. https://doi.org/10.1093/annonc/mdq305
- Pathy NB, Yip CH, Taib NA, et al (2011). Breast cancer in a multi-ethnic Asian setting: results from the Singapore-Malaysia hospital-based breast cancer registry. Breast, 20, 575-80.
- Perou CM, Sorlie T, Eisen MB, et al (2000). Molecular portraits of human breast tumors. Nature, 406, 747-52. https://doi.org/10.1038/35021093
- Qin J, He XF, Wei W, et al (2015). Association between the STK15 polymorphisms and risk of cancer: a meta-analysis. Mol Genet Genomics, 290, 97-114 https://doi.org/10.1007/s00438-014-0895-4
- Qin K, Wu C, Wu XT (2013). Two nonsynonymous polymorphisms (F31I and V57I) of the STK15 gene and breast cancer risk: a meta-analysis based on 5966 cases and 7609 controls. J Int Med Res, 41, 956-63. https://doi.org/10.1177/0300060513490087
- Ruan Y, Song AP, Wang H, et al (2011). Genetic polymorphisms in AURKA and BRCA1 are associated with breast cancer susceptibility in a Chinese Han population. J Pathol, 225, 535-43. https://doi.org/10.1002/path.2902
- Sangrajrang S, Sato Y, Sakamoto H, et al (2010). Genetic polymorphisms in folate and alcohol metabolism and breast cancer risk: a case-control study in Thai women. Breast Cancer Res Treat, 123, 885-93. https://doi.org/10.1007/s10549-010-0804-4
- Sen S, Zhou H, White RA (1997). A putative serine/threonine kinase encoding gene BTAK on chromosome 20q12 is amplified and overexpressed in human breast cancer cell lines. Oncogene, 14, 2195-200. https://doi.org/10.1038/sj.onc.1201065
- Sheikh MK, Khan FA, Imran Abdul Khalid K, Kumar G (2009). Age specific histologic types of carcinoma breast in Malaysians. J Coll Physicians Surg Pak, 19, 201-2.
- Staff S, Isola J, Jumppanen M, Tanner M (2010). Aurora-A gene is frequently amplified in basal-like breast cancer. Oncol Rep, 23, 307-12.
- Sultana R, Abdel-Fatah T, Abbotts R, et al (2012). Targeting XRCC1 deficiency in breast cancer for personalized therapy. Cancer Res, 73, 1621-34.
- Tang WF, Qiu H, Ding H, et al (2013). Association between the STK15 F31I polymorphism and cancer susceptibility: a metaanalysis involving 43,626 subjects. PLoS ONE, 8, 82790. https://doi.org/10.1371/journal.pone.0082790
- Vodicka P, Stetina R, Polakova V, et al (2007). Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects. Carcinogenesis, 28, 657-64.
- Wu KS, Su DS, Lin K, Luo JY, Au WW (2011). XRCC1 Arg399Gln gene polymorphism and breast cancer risk: a meta-analysis based on case-control studies. Asian Pac J Cancer Prev, 12, 2237-43.
- Wu SH, Tsai SM, Hou MF, et al (2006). Interaction of genetic polymorphisms in cytochrome P450 2E1 and glutathione S-transferase M1 to breast cancer in Taiwanese women without smoking and drinking habits. Breast Cancer Res Treat, 100, 93-8. https://doi.org/10.1007/s10549-006-9226-8
- Xu L, Zhou X, Jiang F, Xu L, Yin R (2014). STK15 rs2273535 polymorphism and cancer risk: a meta-analysis of 74,896 subjects. Cancer Epidemiol, 38, 111-7. https://doi.org/10.1016/j.canep.2013.10.008
- Ye S, Rong J, Huang SH, et al (2012). XRCC1 and ADPRT polymorphisms associated with survival in breast cancer cases treated with chemotherapy. Asian Pac J Cancer Prev, 13, 4923-6. https://doi.org/10.7314/APJCP.2012.13.10.4923
- Yip CH, Pathy NB, Teo SH (2014). A review of breast cancer research in Malaysia. Med J Malaysia, 69, 8-22.
- Zgheib NK, Shamseddine AA, Geryess E, et al (2013). Genetic polymorphisms of CYP2E1, GST, and NAT2 enzymes are not associated with risk of breast cancer in a sample of Lebanese women. Mutat Res, 747-748, 40-7. https://doi.org/10.1016/j.mrfmmm.2013.04.004
- Zhou HY, Kuang J, Zhong L, et al (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet, 20, 189-93. https://doi.org/10.1038/2496
Cited by
- gene polymorphisms with an increased risk of gastric cancer vol.68, pp.8, 2016, https://doi.org/10.1002/iub.1521
- Role of CYP2E1 polymorphisms in breast cancer: a systematic review and meta-analysis vol.17, pp.1, 2017, https://doi.org/10.1186/s12935-016-0371-9
- gene polymorphisms and neuroblastoma susceptibility in Chinese children vol.38, pp.3, 2018, https://doi.org/10.1042/BSR20180292