DOI QR코드

DOI QR Code

Gene Set Analyses of Genome-Wide Association Studies on 49 Quantitative Traits Measured in a Single Genetic Epidemiology Dataset

  • Kim, Jihye (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Kwon, Ji-Sun (Department of Bioinformatics and Life Science, Soongsil University) ;
  • Kim, Sangsoo (Department of Bioinformatics and Life Science, Soongsil University)
  • Received : 2013.07.31
  • Accepted : 2013.08.21
  • Published : 2013.09.30

Abstract

Gene set analysis is a powerful tool for interpreting a genome-wide association study result and is gaining popularity these days. Comparison of the gene sets obtained for a variety of traits measured from a single genetic epidemiology dataset may give insights into the biological mechanisms underlying these traits. Based on the previously published single nucleotide polymorphism (SNP) genotype data on 8,842 individuals enrolled in the Korea Association Resource project, we performed a series of systematic genome-wide association analyses for 49 quantitative traits of basic epidemiological, anthropometric, or blood chemistry parameters. Each analysis result was subjected to subsequent gene set analyses based on Gene Ontology (GO) terms using gene set analysis software, GSA-SNP, identifying a set of GO terms significantly associated to each trait ($p_{corr}$ < 0.05). Pairwise comparison of the traits in terms of the semantic similarity in their GO sets revealed surprising cases where phenotypically uncorrelated traits showed high similarity in terms of biological pathways. For example, the pH level was related to 7 other traits that showed low phenotypic correlations with it. A literature survey implies that these traits may be regulated partly by common pathways that involve neuronal or nerve systems.

Keywords

References

  1. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet 2009;41:677-687. https://doi.org/10.1038/ng.384
  2. Ma L, Yang J, Runesha HB, Tanaka T, Ferrucci L, Bandinelli S, et al. Genome-wide association analysis of total cholesterol and high-density lipoprotein cholesterol levels using the Framingham heart study data. BMC Med Genet 2010;11:55.
  3. Yamazaki K, Umeno J, Takahashi A, Hirano A, Johnson TA, Kumasaka N, et al. A genome-wide association study identifies 2 susceptibility loci for Crohn's disease in a Japanese population. Gastroenterology 2013;144:781-788. https://doi.org/10.1053/j.gastro.2012.12.021
  4. Lettre G. Using height association studies to gain insights into human idiopathic short and syndromic stature phenotypes. Pediatr Nephrol 2013;28:557-562. https://doi.org/10.1007/s00467-012-2301-y
  5. Schaid DJ, Sinnwell JP, Jenkins GD, McDonnell SK, Ingle JN, Kubo M, et al. Using the gene ontology to scan multilevel gene sets for associations in genome wide association studies. Genet Epidemiol 2012;36:3-16. https://doi.org/10.1002/gepi.20632
  6. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 2009;41:527-534. https://doi.org/10.1038/ng.357
  7. Lee BY, Cho S, Shin DH, Kim H. Genome-wide association study of copy number variations associated with pulmonary function measures in Korea Associated Resource (KARE) cohorts. Genomics 2011;97:101-105. https://doi.org/10.1016/j.ygeno.2010.11.001
  8. Hong KW, Min H, Heo BM, Joo SE, Kim SS, Kim Y. Recapitulation of genome-wide association studies on pulse pressure and mean arterial pressure in the Korean population. J Hum Genet 2012;57:391-393. https://doi.org/10.1038/jhg.2012.31
  9. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-575. https://doi.org/10.1086/519795
  10. Nam D, Kim J, Kim SY, Kim S. GSA-SNP: a general approach for gene set analysis of polymorphisms. Nucleic Acids Res 2010;38:W749-W754. https://doi.org/10.1093/nar/gkq428
  11. Kwon JS, Kim J, Nam D, Kim S. Performance comparison of two gene set analysis methods for genome-wide association study results: GSA-SNP vs i-GSEA4GWAS. Genomics Inform 2012;10:123-127. https://doi.org/10.5808/GI.2012.10.2.123
  12. Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 2010;26:976-978. https://doi.org/10.1093/bioinformatics/btq064
  13. Yang J, Loos RJ, Powell JE, Medland SE, Speliotes EK, Chasman DI, et al. FTO genotype is associated with phenotypic variability of body mass index. Nature 2012;490:267-272 https://doi.org/10.1038/nature11401
  14. Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM, Karasik D. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet 2007;8 Suppl 1:S14. https://doi.org/10.1186/1471-2350-8-S1-S14
  15. Kim J, Namkung J, Lee S, Park T. Application of structural equation models to genome-wide association analysis. Genomics Inform 2010;8:150-158. https://doi.org/10.5808/GI.2010.8.3.150
  16. Pyun JA, Kim S, Park K, Baik I, Cho NH, Koh I, et al. Interaction effects of lipoprotein lipase polymorphisms with lifestyle on lipid levels in a Korean population: a cross-sectional study. Genomics Inform 2012;10:88-98. https://doi.org/10.5808/GI.2012.10.2.88
  17. Chen G, Bentley A, Adeyemo A, Shriner D, Zhou J, Doumatey A, et al. Genome-wide association study identifies novel loci association with fasting insulin and insulin resistance in African Americans. Hum Mol Genet 2012;21:4530-4536. https://doi.org/10.1093/hmg/dds282
  18. Ryu J, Lee C. Association of glycosylated hemoglobin with the gene encoding CDKAL1 in the Korean Association Resource (KARE) study. Hum Mutat 2012;33:655-659. https://doi.org/10.1002/humu.22040
  19. Kong M, Lee C. Genetic associations with C-reactive protein level and white blood cell count in the KARE study. Int J Immunogenet 2013;40:120-125. https://doi.org/10.1111/j.1744-313X.2012.01141.x
  20. Kwon JS, Kim S. Comparison of erythrocyte traits among European, Japanese and Korean. Genomics Inform 2010;8:159-163 https://doi.org/10.5808/GI.2010.8.3.159
  21. Ro M, Kim S, Pyun JA, Shin C, Cho NH, Lee JY, et al. Association between arachidonate 5-lipoxygenase-activating protein (ALOX5AP) and lung function in a Korean population. Scand J Immunol 2012;76:151-157. https://doi.org/10.1111/j.1365-3083.2012.02712.x
  22. Woo J, Lee C. Genetic association of the gene encoding RPGRIP1L with susceptibility to vascular dementia. Gene 2012;499:160-162. https://doi.org/10.1016/j.gene.2012.03.010
  23. Lesch M, Nyhan WL. A familial disorder of uric acid metabolism and central nervous system function. Am J Med 1964; 36:561-570. https://doi.org/10.1016/0002-9343(64)90104-4
  24. Emanuel DA, Fleishman M, Haddy FJ. Effect of pH change upon renal vascular resistance and urine flow. Circ Res 1957;5:607-611. https://doi.org/10.1161/01.RES.5.6.607
  25. Sandin B, Chorot P. Changes in skin, salivary, and urinary pH as indicators of anxiety level in humans. Psychophysiology 1985;22:226-230. https://doi.org/10.1111/j.1469-8986.1985.tb01591.x
  26. Morrison J, Wen J, Kibble A. Activation of pelvic afferent nerves from the rat bladder during filling. Scand J Urol Nephrol Suppl 1999;201:73-75.
  27. Grassi G, Seravalle G, Colombo M, Bolla G, Cattaneo BM, Cavagnini F, et al. Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation 1998;97:2037-2042. https://doi.org/10.1161/01.CIR.97.20.2037
  28. Spraul M, Ravussin E, Fontvieille AM, Rising R, Larson DE, Anderson EA. Reduced sympathetic nervous activity: a potential mechanism predisposing to body weight gain. J Clin Invest 1993;92:1730-1735. https://doi.org/10.1172/JCI116760
  29. Judy WV, Watanabe AM, Henry DP, Besch HR Jr, Murphy WR, Hockel GM. Sympathetic nerve activity: role in regulation of blood pressure in the spontaenously hypertensive rat. Circ Res 1976;38(6 Suppl 2):21-29. https://doi.org/10.1161/01.RES.38.6.21
  30. Sundlof G, Wallin BG. Human muscle nerve sympathetic activity at rest: relationship to blood pressure and age. J Physiol 1978;274:621-637. https://doi.org/10.1113/jphysiol.1978.sp012170
  31. Walicke P, Varon S, Manthrope M. Purification of a human red blood cell protein supporting the survival of cultured CNS neurons, and its identification as catalase. J Neurosci 1986; 6:1114-1121.
  32. Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 1999;353:1959- 1964. https://doi.org/10.1016/S0140-6736(99)01307-0
  33. Woodhull AM. Ionic blockage of sodium channels in nerve. J Gen Physiol 1973;61:687-708. https://doi.org/10.1085/jgp.61.6.687
  34. Cestele S, Catterall WA. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 2000;82: 883-892. https://doi.org/10.1016/S0300-9084(00)01174-3
  35. Masui Y, Mozai T, Kakehi K. Functional and morphometric study of the liver in motor neuron disease. J Neurol 1985;232:15-19. https://doi.org/10.1007/BF00314034
  36. Shin'oka T, Shum-Tim D, Jonas RA, Lidov HG, Laussen PC, Miura T, et al. Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 1996;112:1610-1620. https://doi.org/10.1016/S0022-5223(96)70020-X
  37. Carlson ES, Tkac I, Magid R, O'Connor MB, Andrews NC, Schallert T, et al. Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr 2009;139: 672-679. https://doi.org/10.3945/jn.108.096354