• 제목/요약/키워드: simultaneous saccharification & fermentation (SSF)

검색결과 51건 처리시간 0.815초

Optimum Conditions for the Simultaneous Saccharification and fermentation of Paper Sludge and Fermentation of paper Sludge to Produce lactic acid and viable Lactobacillus cells (제지 슬러지의 동시당화발효에서 젖산과 유산균 생산을 위한 최적 배양 조건)

  • 정다연;이상목;구윤모;소재성
    • KSBB Journal
    • /
    • 제18권1호
    • /
    • pp.14-18
    • /
    • 2003
  • In this study of the simultaneous saccharification and fermentation (SSF) of paper sludge, fed-batch cultivation of Lactobacillus paracasei subsp. paracasei KLB58 was attempted to produce viable KLB58 cells and lactic acid. Optimal culture conditions, including the temperature and concentration of the supplemented enzyme, were examined in terms of lactic acid production and viable cell count. When the effects of culture temperature and $\beta$-glucosidase concentration were examined in fed-batch SSF, the highest viable cell counts and lactic acid production (i.e. 5$\times$$10^9$ CFU/ml and 45 g/L, respectively) were obtained at 37$^{\circ}C$ and 2 unit/ml of $\beta$-glucosidase.

Bioethanol production using batch reactor from foodwastes (회분식 반응기에서 음식물쓰레기를 이용한 바이오에탄올 생산)

  • Lee, Jun-Cheol;Kim, Jae-Hyung;Park, Hong-Sun;Pak, Dae-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제32권6호
    • /
    • pp.609-614
    • /
    • 2010
  • In the present study, bioethanol was produced using batch style reactor from food wastes which has organic characteristics. Pretreatment was required to reduce its particle size and produce fermentable sugar. Two different enzymes such as carbohydrase and gulcoamylase were tested for saccharification of food waste. The efficiency of carbohydrase saccharification (0.63 g/g-TS) has shown higher than glucoamylase saccharification(0.42 g/g-TS). Saccharomyces cerevisiae produced bioethanol via separate hydrolysis & fermentation (SHF) method and simultaneous saccharification fermentation (SSF) method. The production amount of bioethanol was 0.27 g/$L{\cdot}hr$ for SHF and 0.44 g/$L{\cdot}hr$ for SSF.

Fed-Batch Simultaneous Saccharification and Fermentation of Waste Paper to Ethanol (폐지의 유가식 동시당화발효에 의한 에탄올 생산)

  • 권정기;문현수;김준석;김승욱;홍석인
    • KSBB Journal
    • /
    • 제14권1호
    • /
    • pp.24-30
    • /
    • 1999
  • The fed-bach simultaneous saccharification and fermentation (SSF) of newspaper to ethanol with Brettanomyces custersii was studied. The initial substrate concentration for the effective fed-batch SSF was 8% (w/v). The initial optimum enzyme concentration was 30 FPU/g cellulose for cellulase and the optimum volumetric ratio of $\beta$-glucosidase to cellulase was 0.1. When 4% (w/v) of ball-milled newspaper was supplemented intermittently at time intervals, considering the mixing of newspaper slurry, the fed-batch SSF showed higher ethanol concentration (26.80 g/L) and two times higher ethanol production yield based on enzyme than the batch SSF.

  • PDF

Effects of Engineered Saccharomyces cerevisiae Fermenting Cellobiose through Low-Energy-Consuming Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation

  • Choi, Hyo-Jin;Jin, Yong-Su;Lee, Won-Heong
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.117-125
    • /
    • 2022
  • Until recently, four types of cellobiose-fermenting Saccharomyces cerevisiae strains have been developed by introduction of a cellobiose metabolic pathway based on either intracellular β-glucosidase (GH1-1) or cellobiose phosphorylase (CBP), along with either an energy-consuming active cellodextrin transporter (CDT-1) or a non-energy-consuming passive cellodextrin facilitator (CDT-2). In this study, the ethanol production performance of two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-2 (N306I) with GH1-1 or CBP were compared with two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-1 (F213L) with GH1-1 or CBP in the simultaneous saccharification and fermentation (SSF) of cellulose under various conditions. It was found that, regardless of the SSF conditions, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the best ethanol production among the four strains. In addition, during SSF contaminated by lactic acid bacteria, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the highest ethanol production and the lowest lactate formation compared with those of other strains, such as the hydrolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-1 with GH1-1, and the glucose-fermenting S. cerevisiae with extracellular β-glucosidase. These results suggest that the cellobiose-fermenting yeast strain exhibiting low energy consumption can enhance the efficiency of the SSF of cellulosic biomass.

The Optimum Condition of SSF to Ethanol Production from Starch Biomass (전분질계 바이오매스의 동시당화발효 조건 최적화)

  • Na, Jong Bon;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • 제46권5호
    • /
    • pp.858-862
    • /
    • 2008
  • The Simultaneous Saccharification and Fermentation(SSF) of ethanol production from potato starch studied with respect to growth pH, temperature, substrate concentration. The glucoamylase and Saccharomyceses cerevisiae have a capacity to carry out a single stage SSF process for ethanol production. The characteristics, termed as starch hydrolysis, accumulation of glucose, ethanol production and biomass formation, were affected with variation in pH, temperature and starch concentration. The maximum ethanol concentration of 12.9g/l was obtained using a starch concentration 30g/l, which represent an ethanol yield of 86%. The optimum conditions for the maximum ethanol yield were found to be a temperature of 38, pH of 4.0 and fermentation time of 18hr. Thus by using the control composite design, it is possible to determine the accurate values of the fermentation parameters where maximum production of ethanol occurs.

Ethanol Fermentation of Raw Cassava Starch (II) (캇사바전분의 무증자당화에 의한 에타놀발효에 관한 연구(I I))

  • Bae, Moo;Lee, Jae-Moon
    • Microbiology and Biotechnology Letters
    • /
    • 제12권4호
    • /
    • pp.261-264
    • /
    • 1984
  • The optimal condition of the ethanol fermentation from raw cassava starch by simultaneous saccharification - fermentation (SSF) was studied using glucoamylase from Aspergillus sp. and a yeast strain. The rate and yield of ethanol production were optimum at pH 3.6 with shaking. The fine milling treatment was effective for both saccharification and SSF of raw cassava starch. The presaccharification at 6$0^{\circ}C$ for 1 hr before SSF increased the rate and yield of ethanol production, as well. To increase the ethanol concentration after fermentation the substrate concentration could be increased up to 2195 without the problem of viscosity. The use of high concentration ethanol tolerant yeast strains and high substrate concentration produced ethanol higher than 10%(W/V) after fermentation for 5 days.

  • PDF

Study on Optimizing, Pretreatment & Simultaneous Saccharification and Fermentation Process for High-efficiency Bioethanol (고효율 바이오 에탄올 생산을 위한 최적 전처리 공정 탐색 및 동시당화발효 공정 연구)

  • Choi, Gi-Wook;Han, Min-Hee;Kim, Yule
    • KSBB Journal
    • /
    • 제23권3호
    • /
    • pp.276-280
    • /
    • 2008
  • In this study, the productivity of bioethanol obtained from various domestic raw materials (barley, brown rice, corn and sweet potato) by simultaneous saccharification and fermentation (SSF) process was estimated. Also, optimal conditions of temperature, time and enzyme concentration in gelatinization and liquefaction process were investigated. As a result, corn showed high ethanol yield of 90.45% and sweet potato had a rapid fermentation time. Productivity of bioethanol increases in accordance with the starch value of raw materials except brown rice. Therefore, it is very important to understand the structure of starch. Further studieson the characteristics of raw materials are necessary to enhance the productivity of bioethanol.

Pretreatment on Corn Stover with Low Concentration of Formic Acid

  • Xu, Jian;Thomsen, Mette Hedegaard;Thomsen, Anne Belinda
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권8호
    • /
    • pp.845-850
    • /
    • 2009
  • Bioethanol derived from lignocellulosic biomass has the potential to replace gasoline. Cellulose is naturally recalcitrant to enzymatic attack, and it also surrounded by the matrix of xylan and lignin, which enhances the recalcitrance. Therefore, lignocellulosic materials must be pretreated to make the cellulose easily degraded into sugars and further fermented to ethanol. In this work, hydrothermal pretreatment on corn stover at $195^{\circ}C$ for 15 min with and without lower concentration of formic acid was compared in terms of sugar recoveries and ethanol fermentation. For pretreatment with formic acid, the overall glucan recovery was 89% and pretreatment without formic acid yielded the recovery of 94%. Compared with glucan, xylan was more sensitive to the pretreatment condition. The lowest xylan recovery of 55% was obtained after pretreatment with formic acid and the highest of 75% found following pretreatment without formic acid. Toxicity tests of liquor parts showed that there were no inhibitions found for both pretreatment conditions. After simultaneous saccharification and fermentation (SSF) of the pretreated corn stover with Baker's yeast, the highest ethanol yield of 76.5% of the theoretical was observed from corn stover pretreated at $195^{\circ}C$ for 15 min with formic acid.

Continuous Ethanol Production from Starch by Simultaneous Saccharification and Fermentation in a Tapered Column Fermentor (역원추형 발효조에서의 동시당화발효에 의한 전분으로 부터의 연속 에탄올 발효)

  • 김철호;유연우김철이상기
    • KSBB Journal
    • /
    • 제5권4호
    • /
    • pp.329-334
    • /
    • 1990
  • In an attempt to develop a novel process for ethanol production from starch, a simultaneous saccharification and fermentation (SSF) process using Zymomonas mobilis and amyloglucosidase (AMG) was studied in continuous modes. Compared with a conventional cylindrical column type of fermentor, the tapered column type of fermentor was found to be superior in terms of reactor performance for ethanol fermentation. The tapered columm fermentor packed with coimmobilized Z. mobilis and AMG alleviated the problems which were associated with CO2 evolution and provided a significantly better flow pattern for both liquid and gas phases in the fermentor without channelling. However, the fluidized bed type of tapered column fermentor using flocculent strain of Z. mobiles and immobilized AMG showed lower productivity (5.2g/1/h) than that of packed bed type of tapered column fermentor(9.2g/l/h).

  • PDF

Evaluation of Bioethanol Productivity from Sorghum × Sudangrass Hybrid for Cellulosic Feedstocks (셀룰로오스계 원료작물로서 수수-수단그래스 교잡종의 바이오에탄올 생산량 평가)

  • Cha, Young-Lok;Moon, Youn-Ho;Koo, Bon-Cheol;Ahn, Jong-Woong;Yoon, Young Mi;Nam, Sang-Sik;Kim, Jung Kon;An, Gi Hong;Park, Kwang-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제58권1호
    • /
    • pp.71-77
    • /
    • 2013
  • The world demand of renewable bioenergy as an alternative transportation fuel is greatly increasing. Research for bioethanol production is currently being progressed intensively throughout the world. Therefore it will be necessary to develop bioethanol production with cellulosic materials. In this study, the yield of ethanol production was evaluated by simultaneous saccharification and fermentation (SSF) using sodium hydroxide pretreated sorghum ${\times}$ sudangrass hybrids. Composition analysis of 11 varieties of sorghum ${\times}$ sudangrass hybrids was performed for selection of excellent variety to efficiently produce bioethanol. The content of cellulose, hemicellulose, lignin and ash of these varieties were 32~39%, 19~24%, 17~22% and 6~11%, respectively. Among these varieties, 4 varieties of sorghum ${\times}$ sudangrass hybrids were selected for the evaluation of ethanol yield and those were pretreated with 1 M NaOH solution at $150^{\circ}C$ for 30 min using high temperature explosion system. After pretreatment, samples were neutralized with tap water. It contained 52~57% of cellulose. Simultaneous saccharification and fermentation (SSF) was carried out for 48 h at $33^{\circ}C$ by Saccharomyces cerevisiae CHY1011 using Green star variety. The yield of ethanol was 92.4% and the amount of ethanol production was estimated at 6206 L/ha.