• Title/Summary/Keyword: simulation. DPS(double polarity source)

Search Result 4, Processing Time 0.021 seconds

Improvement of ESD Protection Performance of High Voltage Operating EDNMOS Device with Double Polarity Source (DPS) Structure (DPS(Double Polarity Source) 구조를 갖는 고전압 동작용 EDNMOS 소자의 정전기 보호 성능 개선)

  • Seo, Yong-Jin;Yang, Jun-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.12-17
    • /
    • 2014
  • In this paper, modified EDNMOS device with DPS (double polarity source) structure are suggested to realize stable and robust ESD (electrostatic discharge) protection performance of high voltage operating microchip. This DPS structure inserts the P+ diffusion layer on N+ source side, which in intended to block lateral extension of the electron rich region from N+ source side. Based on our simulation results, the inserted P+ diffusion layer effectively prevents the formation of deep electron channeling induced by high electron injection. As a result, our proposed DPS_EDNMOS devices could overcome the double snapback effect of conventional Std_EDNMOS device.

Characteristics of Double Polarity Source-Grounded Gate-Extended Drain NMOS Device for Electro-Static Discharge Protection of High Voltage Operating Microchip (마이크로 칩의 정전기 방지를 위한 DPS-GG-EDNMOS 소자의 특성)

  • Seo, Yong-Jin;Kim, Kil-Ho;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.97-98
    • /
    • 2006
  • High current behaviors of the grounded gate extended drain N-type metal-oxide-semiconductor field effects transistor (GG_EDNMOS) electro-static discharge (ESD) protection devices are analyzed. Simulation based contour analyses reveal that combination of BJT operation and deep electron channeling induced by high electron injection gives rise to the 2-nd on-state. Thus, the deep electron channel formation needs to be prevented in order to realize stable and robust ESD protection performance. Based on our analyses, general methodology to avoid the double snapback and to realize stable ESD protection is to be discussed.

  • PDF

Characteristics of Extended Drain N-type MOSFET with Double Polarity Source for Electrostatic Discharge Protection (정전기 보호를 위한 이중 극성소스를 갖는 EDNMOS 소자의 특성)

  • Seo, Yong-Jin;Kim, Kil-Ho;Park, Sung-Woo;Lee, Sung-Il;Han, Sang-Jun;Han, Sung-Min;Lee, Young-Keun;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.97-98
    • /
    • 2006
  • High current behaviors of extended drain n-type metal-oxide-semiconductor field effects transistor (EDNMOS) with double polarity source (DPS) for electrostatic discharge (ESD) protection are analyzed. Simulation based contour analyses reveal that combination of bipolar junction transistor operation and deep electron channeling induced by high electron injection gives rise to the second on-state. Therefore, the deep electron channel formation needs to be prevented in order to realize stable and robust ESD protection performance. Based on our analyses, general methodology to avoid the double snapback and to realize stable ESD protection is to be discussed.

  • PDF

Determination of optimal ion implantation conditions to prevent double snapback of high voltage operating DDDNMOS device for ESD protection (고전압 정전기 보호용 DDDNMOS 소자의 더블 스냅백 방지를 위한 최적의 이온주입 조건 결정)

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.333-340
    • /
    • 2022
  • Process and device simulations were performed to determine the optimal ion implantation conditions to prevent double snapback of high voltage operating DDDNMOS (double diffused drain N-type MOSFET) device for ESD protection. By examining the effects of HP-Well, N- drift and N+ drain ion implantation on the double snapback and avalanche breakdown voltages, it was possible to prevent double snapback and improve the electrostatic protection performance. If the ion implantation concentration of the N- drift region rather than the HP-Well region is optimally designed, it prevents the transition from the primary on-state to the secondary on-state, so that relatively good ESD protection performance can be obtained. Since the concentration of the N- drift region affects the leakage current and the avalanche breakdown voltage, in the case of a process technology with an operating voltage greater than 30V, a new structure such as DPS or colligation of optimal process conditions can be applied. In this case, improved ESD protection performance can be realized.