• Title/Summary/Keyword: similar material

Search Result 3,185, Processing Time 0.028 seconds

Refractive Index Dispersion of Aluminate Glasses on the Addition of $SiO_2$ ($SiO_2$ 첨가에 따른 알루미네이트 유리의 굴절률 분산 특성)

  • 원종원;정용선;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.693-698
    • /
    • 1997
  • The refractive index and dispersion in the (100-x)(0.6CaO.0.4Al2O3).xSiO2(x=0~30) glasses were investigated. As the amount of SiO2 increased, the refractive index decreased. The change of refractive index was attributed to the change of the molar refraction rather than the molar volume. When the amount of SiO2 was smaller than 20 mol%, the average electronic transition energy gaps(E0) and the electronic oscillator strengths(Ed) were about 10.9($\pm$0.1) nd 18($\pm$0.5)eV, respectively. However E0 and Ed of the glass (CAS30) with 30 mol% SiO2 increased to 12.63 and 19.89eV, respectively. The similar results was observed in the variation of Abbe Number. Abbe number of the glass in the range of 0~20 mol% SiO2 was about 46 and that of CAS30 increased to 60. The zero-material dispersion wavelength({{{{ lambda }}0) of pure calcium aluminate glass was 1.8 ${\mu}{\textrm}{m}$. As the amount of SiO2 increased, the zero-material dispersion wavelength shifted to a shorter wavelength. {{{{ lambda }}0 of CAS30 was 1.5 ${\mu}{\textrm}{m}$, that is currently using for the optical telecommunication system.

  • PDF

New polymeric host material for efficient organic electro phosphorescent devices

  • Jung, Choong-Hwa;Park, Moo-Jin;Eom, Jae-Hoon;Shim, Hong-Ku;Lee, Seong-Taek;Yang, Nam-Choul;Liand, Duan;Suh, Min-Chul;Chin, Byung-Doo;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.843-845
    • /
    • 2009
  • A polymeric host for triplet emitters composed of N-alkylcarbazole and tetramethylbenzene units was successfully synthesized. Efficient energy transfer was observed between this polymeric host and green phosphorescent dyes. The device fabricated using 5 wt% green 1 in the polymeric host as the emitting layer showed the best performance. Thin films of this host-guest system, exhibiting clear stripe patterns could be prepared through the LITI process. The patterned films were then used to fabricate electrophosphorescent devices, which show performance characteristics similar to those of spin-coated devices. The new host material is a good candidate to be used in polymer-based full-color electrophosphorescent light-emitting displays.

  • PDF

Optimal Design of Tall Residential Building with RC Shear Wall and with Rectangular Layout

  • Jinjie, Men;Qingxuan, Shi;Zhijian, He
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The objective of optimization is to present a design process that minimizes the total material consumption while satisfying current codes and specifications. In the research an optimization formulation for RC shear wall structures is proposed. And based on conceptual design methodology, an optimization process is investigated. Then optimal design techniques and specific explanations are introduced for residential buildings with shear wall structure, especially for that with a rectangular layout. An example of 30-story building is presented to illustrate the effectiveness of the proposed optimal design process. Furthermore, the influence of aspect ratio on the concrete consumption and the steel consumption of the superstructure are analyzed for this typical RC shear wall structure; and their relations are obtained by regressive analysis. Finally, the optimal material consumption is suggested for the residential building with RC shear wall structure and with rectangular layout. The relation and the data suggested can be used for guiding the design of similar RC shear wall structures.

Passive Damping Enhancement of Composite Beam Using Piezo Ceramic Connected to External Electrical Networks (외부 회로가 연결된 압전 세라믹을 이용한 복합재 보의 수동 감쇠 개선)

  • Yang, Seung-Man;Kim, Do-Hyung;Han, Jae-Hung;Lee, In
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.1-9
    • /
    • 1999
  • The piezoelectric material connected to external electric networks possesses frequency dependent stiffness and loss factor which are also affected by the shunting circuit. The external electric networks are generally specialized for two shunting circuits: one is the case of a resistor alone and the other is the combination of a resistor and an inductor. For resistive shunting, the material properties exhibit frequency dependency similar to viscoelastic materials, but are much stiffer and more independent of temperature. Shunting with a resistor and inductor introduces an electrical resonance, which can change the characteristics of structural resonance optimally in a manner analogous to a PMD (proof mass damper). Passive damping enhancement of composite beam using piezoelectric material connected to external electrical networks is achieved and presented in this paper.

  • PDF

Biocompatible Material Design Minimizing Hypertrophic Injury and Treatment Effects using a Mini-pig (비대성 흉터를 최소화하는 생체적합성 재료설계와 미니돼지에 대한 치료 효과)

  • Kim, Yong-Hwan;Kim, Jong-Woo;Jin, Seong-Hun;Kim, I-Su;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.95-100
    • /
    • 2017
  • Recently, biomedical-grade texture material gauze has often been used to treat wounds. At this time, it is difficult to remove scratches and pushed gauze; if you remove it with force, the tissue may separate and bleeding may occur again. In this study, we studied a method to apply medical-grade silicone material. Similar to the research result that hypertrophic wounds reduce the thickness of scar marks. Through mini-pig experiments, we evaluated the effects on scar treatment. The test results showed that the silicone cover layer applied to the wound site had a sealing effect on the wound area, skin temperature, and histopathological examination. In conclusion, gel treatment utilizing a biocompatible substance had the effect of minimizing hypertrophic scars.

The Machining Characteristics of Groove Patterning for Nitinol Shape Memory Alloy Using Electrochemical Machining (전해가공을 이용한 Nitinol 형상기억합금의 그루브 패턴 가공특성에 관한 연구)

  • Shin, Tae-Hee;Kim, Baek-Kyoum;Baek, Seung-Yub;Lee, Eun-Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.551-557
    • /
    • 2009
  • A development of smart materials is becoming a prominent issue on present industries. A smart material, included in functions, is needed for micro fabrication. A shape memory alloy(SMA) in a smart material is best known material. Ni-Ti alloy, composed of nikel and titanium is one of the best shape memory alloy(SMA). Nitinol SMA is used for a lot of high tech industry such as aero space, medical device, micro actuator, sensor system. However, Ni-Ti SMA is difficult to process to make a shape and fabrications as traditional machining process. Because nitinol SMA, that is contained nikel content more than titanium content, has similar physical characteristics of titanium. In this paper, the characteristics of ECM grooving process for nitinol SMA are investigated by experiments. The experiments in this study are progressed for power, gap distance and machining time. The characteristics are found each part. Fine shape in work piece can be found on conditions; current 6A, duty factor 50%, gap distance 15%, gap distance $15{\mu}m$, machining time 10min.

  • PDF

Development of method to remove weld scallop and ceramic backing material of wedge type and its application

  • Kang, Sung-Koo;Yang, Jong-Soo;Kim, Ho-Kyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.315-323
    • /
    • 2015
  • The weld scallop has been used for joining T-bars. There are a lot of weld scallops in shipbuilding. It is difficult to perform scallop welding due to the inconvenient welding position. This results in many problems such as porosity, slag inclusion, etc. In this study, a new method is devised to remove weld scallops by incorporating a Ceramic Backing Material (CBM). The weld scallop is removed by an elongation of the v groove. In order to insert a CBM into the groove without a weld scallop, a wedge-shaped CBM is developed. The top side of the developed CBM is similar to the shape of a general back bead. The bottom surface has a saw-toothed shape for cutting at a suitable length. This can be attached to the root side of a face plate using adhesive tape, just like a general CBM. Welding experiments in normal and abnormal conditions are carried out and the possibility of burn-through is examined. This CBM's applicability to shipbuilding is verified.

Effect of Different Substrates and Casing Materials on the Growth and Yield of Calocybe indica

  • Amin, Ruhul;Khair, Abul;Alam, Nuhu;Lee, Tae-Soo
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.97-101
    • /
    • 2010
  • Calocybe indica, a tropical edible mushroom, is popular because it has good nutritive value and it can be cultivated commercially. The current investigation was undertaken to determine a suitable substrate and the appropriate thickness of casing materials for the cultivation of C. indica. Optimum mycelial growth was observed in coconut coir substrate. Primordia initiation with the different substrates and casing materials was observed between the 13th and 19th day. The maximum length of stalk was recorded from sugarcane leaf, while diameter of stalk and pileus, and thickness of pileus were found in rice straw substrate. The highest biological and economic yield, and biological efficiency were also obtained in the rice straw substrate. Cow dung and loamy soil, farm-yard manure, loamy soil and sand, and spent oyster mushroom substrates were used as casing materials to evaluate the yield and yield-contributing characteristics of C. indica. The results indicate that the number of effective fruiting bodies, the biological and economic yield, and the biological efficiency were statistically similar all of the casing materials used. The maximum biological efficiency was found in the cow dung and loamy soil casing material. The cow dung and loamy soil (3 cm thick) was the best casing material and the rice straw was the best substrate for the commercial cultivation of C. indica.

A MICROSTRUCTURAL MODEL OF THE THERMAL CONDUCTIVITY OF DISPERSION TYPE FUELS WITH A FUEL MATRIX INTERACTION LAYER

  • Williams, A.F.;Leitch, B.W.;Wang, N.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.839-846
    • /
    • 2013
  • This paper describes a finite element model of the microstructure of dispersion type nuclear fuels, which can be used to determine the effective thermal conductivity of the fuels during irradiation. The model simulates a representative region of the fuel as a prism shaped unit cell made of brick elements. The elements within the unit cell are assigned material properties of either the fuel or the matrix depending on position, in such a way as to represent randomly distributed fuel particles with a size distribution similar to that of the as manufactured fuel. By applying an appropriate heat flux across the unit cell it is possible to determine the effective thermal conductivity of the unit cell as a function of the volume fraction of the fuel particles. The presence of a fuel/matrix interaction layer is simulated by the addition of a third set of material properties that are assigned to the finite elements that surround each fuel particle. In this way the effective thermal conductivity of the material may also be determined as a function of the volume fraction of the interaction layer. Work is on going to add fission gas bubbles in the fuel as a fourth phase to the model.

Electro-optical analysis of a miniaturized electrostatic electron lens (초소형 전자 렌즈의 전자 광학적 분석)

  • Kim, Ho-Seob;Kim, Dae-Wook;Kim, Young-Chul;Choi, Sang-Kuk;Kim, Dae-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.194-199
    • /
    • 2003
  • The analysis of operation characteristics of a miniaturized electrostatic electron lens system called an Einzel lens was performed using a simulation tool of FCM method. The potential distributions of Einzel lenses operated both in retarding and accelerating modes show similar features. But the electric fields determined from the potential distributions show opposite directions, which results in different features in the electron beam trajectory in each mode of operation. For the same working distance, focusing voltage in the accelerating mode is higher than that in the retarding mode.