• Title/Summary/Keyword: silicon nanocrystals

Search Result 25, Processing Time 0.024 seconds

Photocurrent of CdSe nanocrystals on singlewalled carbon nanotube-field effect transistor

  • Jeong, Seung-Yol;Lim, Seung-Chu;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.40-40
    • /
    • 2010
  • CdSe nanocrystals (NCs) have been decorated on singlewalled carbon nanotubes (SWCNTs) by combining a method of chemically modified substrate along with gate-bias control. CdSe/ZnS core/shell quantum dots were negatively charged by adding mercaptoacetic acid (MAA). The silicon oxide substrate was decorated by octadecyltrichlorosilane (OTS) and converted to hydrophobic surface. The negatively charged CdSe NCs were adsorbed on the SWCNT surface by applying the negative gate bias. The selective adsorption of CdSe quantum dots on SWCNTs was confirmed by confocal laser scanning microscope. The measured photocurrent clearly demonstrates that CdSe NCs decorated SWCNT can be used for photodetector and solar cell that are operable over a wide range of wavelengths.

  • PDF

Expanding Thermal Plasma CVD of Silicon Thin Films and Nano-Crystals: Fundamental Studies and Applications

  • Sanden, Richard Van De
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.78-78
    • /
    • 2012
  • In this presentation I will review the expanding thermal plasma chemical vapour deposition (ETP-CVD) technology, a deposition technology capable of reaching ultrahigh deposition rates. High rate deposition of a-Si:H, ${\mu}c$-Si:H, a-SiNx:H and silicon nanocrystals will be discussed and their various applications, mainly for photovoltaic applications demonstrated. An important aspect over the years has been the fundamental investigation of the growth mechanism of these films. The various in situ (plasma) and thin film diagnostics, such as Langmuir probes, retarding field analyzer, (appearance potential) mass spectrometry and cavity ring absorption spectroscopy, spectroscopic ellipsometry to name a few, which were successfully applied to measure radical and ion density, their temperature and kinetic energy and their reactivity with the growth surface. The insights gained in the growth mechanism provided routes to novel applications of the ETP-CVD technology, such as the ultrahigh high growth rate of silicon nanorystals and surface passivation of c-Si surfaces.

  • PDF

Low Voltage Program/Erase Characteristics of Si Nanocrystal Memory with Damascene Gate FinFET on Bulk Si Wafer

  • Choe, Jeong-Dong;Yeo, Kyoung-Hwan;Ahn, Young-Joon;Lee, Jong-Jin;Lee, Se-Hoon;Choi, Byung-Yong;Sung, Suk-Kang;Cho, Eun-Suk;Lee, Choong-Ho;Kim, Dong-Won;Chung, Il-Sub;Park, Dong-Gun;Ryu, Byung-Il
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.68-73
    • /
    • 2006
  • We propose a damascene gate FinFET with Si nanocrystals implemented on bulk silicon wafer for low voltage flash memory device. The use of optimized SRON (Silicon-Rich Oxynitride) process allows a high degree of control of the Si excess in the oxide. The FinFET with Si nanocrystals shows high program/erase (P/E) speed, large $V_{TH}$ shifts over 2.5V at 12V/$10{\mu}s$ for program and -12V/1ms for erase, good retention time, and acceptable endurance characteristics. Si nanocrystal memory with damascene gate FinFET is a solution of gate stack and voltage scaling for future generations of flash memory device. Index Terms-FinFET, Si-nanocrystal, SRON(Si-Rich Oxynitride), flash memory device.

High-Yield Gas-Phase Laser Photolysis Synthesis of Germanium Nanocrystals for High-Performance Lithium Ion Batteries (고성능 리튬이온 전지를 위한 저마늄 나노입자의 가스상 레이저 광분해 대량 합성법 개발)

  • Kim, Cang-Hyun;Im, Hyung-Soon;Cho, Yong-Jae;Chung, Chan-Su;Jang, Dong-Myung;Myung, Yoon;Kim, Han-Sung;Back, Seung-Hyuk;Im, Young-Rok;Park, Jeung-Hee;Song, Min-Seob;Cho, Won-Il;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.181-189
    • /
    • 2012
  • We developed a new high-yield synthesis method of free-standing germanium nanocrystals (Ge NCs) by means of the gas-phase photolysis of tetramethyl germanium in a closed reactor using an Nd-YAG pulsed laser. Size control (5-100 nm) can be simply achieved using a quenching gas. The $Ge_{1-x}Si_x$ NCs were synthesized by the photolysis of a tetramethyl silicon gas mixture and their composition was controlled by the partial pressure of precursors. The as-grown NCs are sheathed with thin (1-2 nm) carbon layers, and well dispersed to form a stable colloidal solution. Both Ge NC and Ge-RGO hybrids exhibit excellent cycling performance and high capacity of the lithium ion battery (800 and 1100 mAh/g after 50 cycles, respectively) as promising anode materials for the development of high-performance lithium batteries. This novel synthesis method of Ge NCs is expected to contribute to expand their applications in high-performance energy conversion systems.

Newly Synthesized Silicon Quantum Dot-Polystyrene Nanocomposite Having Thermally Robust Positive Charge Trapping

  • Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.221-221
    • /
    • 2013
  • Striving to replace the well known silicon nanocrystals embedded in oxides with solution-processable charge-trapping materials has been debated because of large scale and cost effective demands. Herein, a silicon quantum dot-polystyrene nanocomposite (SiQD-PS NC) was synthesized by postfunctionalization of hydrogen-terminated silicon quantum dots (H-SiQDs) with styrene using a thermally induced surface-initiated polymerization approach. The NC contains two miscible components: PS and SiQD@PS, which respectively are polystyrene and polystyrene chains-capped SiQDs. Spin-coated films of the nanocomposite on various substrate were thermally annealed at different temperatures and subsequently used to construct metal-insulator-semiconductor (MIS) devices and thin film field effect transistors (TFTs) having a structure p-$S^{++}$/$SiO_2$/NC/pentacene/Au source-drain. C-V curves obtained from the MIS devices exhibit a well-defined counterclockwise hysteresis with negative fat band shifts, which was stable over a wide range of curing temperature ($50{\sim}250^{\circ}C$. The positive charge trapping capability of the NC originates from the spherical potential well structure of the SiQD@PS component while the strong chemical bonding between SiQDs and polystyrene chains accounts for the thermal stability of the charge trapping property. The transfer curve of the transistor was controllably shifted to the negative direction by chaining applied gate voltage. Thereby, this newly synthesized and solution processable SiQD-PS nanocomposite is applicable as charge trapping materials for TFT based memory devices.

  • PDF

Influence of Carbon diffusion on the characterization of Si nanocrystals in SiC matrix (Carbon diffusion에 의한 SiC matrix 내의 실리콘 양자점 특성 분석)

  • Moon, Jihyun;Kim, Hyunjong;Cho, Jun Sik;Park, Sang Hyun;Yoon, Kyung Hoon;Song, Jinsoo;O, Byungsung;Lee, Jeong Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.100.1-100.1
    • /
    • 2010
  • 고효율 실리콘 양자점 태양전지를 제작하기 위해 Si과 C target을 co-sputtering 방식으로 제조한 SiC matrix를 열처리하여 박막 내에 Si nanocrystal들을 생성하였다. Si nanocrystal의 특성은 다양한 요인에 영향을 받는 데 barrier 물질인 SiC matrix가 가장 큰 영향을 준다. SiC는 900도 이상에서 열처리하는 동안 Si과 C과 SiC으로 재배열 혹은 재결합하는 데 이 때 가장 작은 carbon이 빠르게 diffusion하는 현상에 의해 Si nanocrystal의 성장과 특성에 영향을 주게 된다. 이 현상을 연구하기 위해 stoichiometric SiC/Si-rich SiC/stoichiometric SiC의 3층 구조로 시료를 제작하여 이를 SIMS의 depth profiling을 통하여 열처리 전보다 열처리 후에 Si-rich SiC layer내에 carbon이 약 2~3%정도 증가한 것으로 carbon이 diffusion된 것을 확인하였다. 이 시료를 UV-VIS-NIR spectroscopy, Raman, GIXRD 등의 다양한 측정을 통하여 carbon diffusion에 의한 Si nanocrystal의 특성변화를 연구하였다.

  • PDF

Characterization of Electrical Properties of Si Nanocrystals Embedded in a $SiO_2$ Layer by Scanning Probe Microscopy (SPM (Scanning Probe Microscopy)을 이용한 $SiO_2$ layer에서의 실리콘 나노 크리스탈의 전기적 특성 분석)

  • Kim, Jung-Min;Her, Hyun-Jung;Son, J.M.;Lee, Eun-Hye;Khang, Yoon-Ho;Kang, Chi-Jung;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1900-1902
    • /
    • 2005
  • 본 연구에서는 scanning probe microscopy(SPM)을 이용하여 국소영역에서 silicon nanocrystal(Si NC)의 전기적 특성을 분석하였다. Si NCs은 압축된 silicon powder를 laser로 분해하는 laser ablation 방식으로 제조되었고, sharpening oxidation 과정을 통하여 Si NC 주변에 oxide shell을 형성시켰다. 이 과정에서 Si NCs은 $10{\sim}50 nm$의 크기와 약 $10^{11}/cm^2$의 밀도로 $SiO_2$층에 증착되었다. SPM의 conducting tip을 통하여 전하는 각각의 Si NC로 주입되게 되고, 이로 인하여 발생하는 SCM image와 dC/dV curve의 변화를 통하여 Si NC에서 전하 거동을 모니터 하였다. 또한 국소영역에서 Si NC의 전기적 특성을 MOS capacitor 구조에서의 C-V 특성과 비교 분석하였다.

  • PDF

Electrical properties of metal-oxide-semiconductor structures containing Si nanocrystals fabricated by rapid thermal oxidation process (급속열처리산화법으로 형성시킨 $SiO_2$/나노결정 Si의 전기적 특성 연구)

  • Kim, Yong;Park, Kyung-Hwa;Jung, Tae-Hoon;Park, Hong-Jun;Lee, Jae-Yeol;Choi, Won-Chul;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • Metal oxide semiconductor (MOS) structures containing nanocrystals are fabricated by using rapid thermal oxidations of amorphous silicon films. The amorphous films are deposited either by electron beam deposition method or by electron beam deposition assisted by Ar ion beam during deposition. Post oxidation of e-beam deposited film results in relatively small hysteresis of capacitance-voltage (C-V) and the flat band voltage shift, $\DeltaV_{FB}$ is less than 1V indicative of the formation of low density nanocrystals in $SiO_2$ near $SiO_2$/Si interface. By contrast, we observe very large hysteresis in C-V characteristics for oxidized ion-beam assisted e-beam deposited sample. The flat band voltage shift is larger than 22V and the hysteresis becomes even broader as increasing injection times of holes at accumulation condition and electrons at inversion condition. The result indicates the formation of slow traps in $SiO_2$ near $SiO_2$/Si interface which might be related to large density nanocrystals. Roughly estimated trap density is $1{\times}10^{13}cm^{-2}$. Such a large hysteresis may be explained in terms of the activation of adatom migration by Ar ion during deposition. The activated migration may increase nucleation rate of Si nuclei in amorphous Si matrix. During post oxidation process, nuclei grow into nanocrystals. Therefore, ion beam assistance during deposition may be very feasible for MOS structure containing nanocrystals with large density which is a basic building block for single electron memory device.

  • PDF

Effect of Hydrogen Passivation on the Photoluminescence of Si Nanocrystallites Thin Flms (수소 Passivation에 따른 실리콘 나노결정 박막의 광학적 특성 변화 연구)

  • 전경아;김종훈;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.29-32
    • /
    • 2001
  • Hydrogen passivation of Si nanocrystals identifies luminescence mechanism indirectly. Si nanocrystallites thin films on p-type (100) Si substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser After deposition, Si nanocrystallites thin films have been annealed at 600$^{\circ}C$ and 760$^{\circ}C$ in nitrogen ambient, respectively. Hydrogen passivation was subsequently performed at 500$^{\circ}C$ in forming gas (95 % N$_2$ + 5 % H$_2$) for an 1 hour. We report the photoluminescnece(PL) property of Si thin films by the hydrogen passivation. The luminescence mechanism of Si nanocrystallites has also been investigated.

  • PDF