• Title/Summary/Keyword: silicon defects

검색결과 247건 처리시간 0.028초

SEM/EDX를 이용한 OPC 드럼용 Al 튜브의 표면결함 분석에 관한 연구 (On the Surface Defect Analysis of an Aluminum Tube for an OPC Drum using n SEM and EDX)

  • 김청균
    • Tribology and Lubricants
    • /
    • 제23권4호
    • /
    • pp.143-148
    • /
    • 2007
  • The surface defects of an aluminum tube for an OPC drum have been analyzed using a scanning microscopy(SEM) and an energy dispersive X-ray analyze.(EDX). The SEM/EDX system, which may provide good information on the surface defects and their distributions, provides an optical diameter of an impurity and a chemical composition. These are strongly related on the coated film thickness and quality of an OPC drum, which is a key element of a toner cartridge for a laser printer. The experimental results show that the local deformations, scratch wear, and flaws are produce the non-uniform coating layers, which may be removed by a manufacturing process of an aluminum tube. The major parameters on the coating quality of an OPC drum are the impurities of an aluminum tube such as silicon, oxygen, calcium, carbon, sulphur, chlorine, and others. These impurities may be removed by an ingot molding, extrusion and drawing, quality control, and packing processes with a strict manufacturing technology.

자동차 엔진용 핀부싱 베어링의 SEM/EDX 이용 성분.결함분석에 관한 연구 (SEM/EDX Analysis on the Composition and Surface Defect in a Pin Bushing Bearing for an Automotive Engine)

  • 김청균
    • Tribology and Lubricants
    • /
    • 제23권5호
    • /
    • pp.195-200
    • /
    • 2007
  • This paper presents the friction induced scuffing and wear defects analysis of a pin bushing bearing based on the chemical composition using a scanning microscopy (SEM) and an energy dispersive X-ray analyzer (EDX). The SEM/EDX system, which may provide good information on the surface thermal defects and chemical compositions, provides impurities such as an aluminum, a silicon, a ferrous component and an oxygen, especially. The EDX measured results show that the oxygen may reduce the strength and a hardness of a pin busing, which may lead to a scuffing and a seizure on the rubbing contact surface. The current technology fabricated by a sintering for a pin bushing bearing should be modified or changed to reduce the oxygen composition and the impurities in pin bushing materials.

Humidity Induced Defect Generation and Its Control during Organic Bottom Anti-reflective Coating in the Photo Lithography Process of Semiconductors

  • Mun, Seong-Yeol;Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of information and communication convergence engineering
    • /
    • 제10권3호
    • /
    • pp.295-299
    • /
    • 2012
  • Defect generation during organic bottom anti-reflective coating (BARC) in the photo lithography process is closely related to humidity control in the BARC coating unit. Defects are related to the water component due to the humidity and act as a blocking material for the etching process, resulting in an extreme pattern bridging in the subsequent BARC etching process of the poly etch step. In this paper, the lower limit for the humidity that should be stringently controlled for to prevent defect generation during BARC coating is proposed. Various images of defects are inspected using various inspection tools utilizing optical and electron beams. The mechanism for defect generation only in the specific BARC coating step is analyzed and explained. The BARC defect-induced gate pattern bridging mechanism in the lithography process is also well explained in this paper.

개방셀 세라믹스의 압축강도에 대한 제조공정변수 및 미세구조의 영향 (Effects of Fabrication Variables and Microstructures on the Compressive Strength of Open Cell Ceramics)

  • 정한남;현상훈
    • 한국세라믹학회지
    • /
    • 제36권9호
    • /
    • pp.954-964
    • /
    • 1999
  • The effect of fabrication variables and microstructures on the compressive strength of open cell alumina zirconia and silicon nitride ceramics fabricated by polymeric sponge method was investigated. Bulk density and compressive strength of open cell ceramics were mainly affected by coating characteristics of ceramic slurry on polymeric sponge that controlled a shape thickness and defect of the struts. Sintering temperature was optimized for enhancement of strut strength and compressive strength of open cell ceramics. Relative density and compressive strength behaviors were relatively well matched with the predicted values. Open cell ceramics of lower relative density below 0.1 prepared by first relatively well matched with the predicted values. Open cell ceramics of lower relative density below 0.1 prepared by first coating of ceramic slurry had thin triangular prismatic struts that were often broken or longitudinally cracked. With an application of second coating of slurry shape of struts was transformed into thickner cylindrical one and defects in struts were healed but the relative density increased over 0.2 Open cell zirconia had both the highest bulk density and compressive strength and alumina had the lowest compressive strength while silicon nitrides showed relatively high compressive strength and the lowest density. Based upon the analysis open cell silicon nitride was expected to be one of potential structural ceramics with light weight.

  • PDF

Correlations between Electrical Properties and Process Parameters of Silicon Nitride Films Prepared by Low Temperature (100℃) Catalytic CVD

  • Noh, Se Myoung;Hong, Wan-Shick
    • 한국세라믹학회지
    • /
    • 제52권3호
    • /
    • pp.209-214
    • /
    • 2015
  • Silicon nitride films were deposited at $100^{\circ}C$ by using the catalytic chemical vapor deposition technique. The source gas mixing ratio, $R_N=[NH_3]/[SiH_4]$, was varied from 10 to 30, and the hydrogen dilution ratio, $R_H=[H_2]/[SiH_4]$, was varied from 20 to 100. The breakdown field strength reached a maximum value at $R_N=20$ and $R_H=20$, whereas the resistivity decreased in the same sample. The relative permittivity had a positive correlation with the breakdown field strength. The capacitance-voltage threshold curve showed an asymmetric hysteresis loop, which became more squared as $R_H$ increased. The width of the hysteresis window showed a negative correlation with the slope of the transition region, implying that the combined effect of $R_N$ and $R_H$ overides the interface defects while creating charge storage sites in the bulk region.

Effect of surface roughness on the quality of silicon epitaxial film grown after UV-irradiated gas phase cleaning

  • Kwon, Sung-Ku;Kim, Du-Hyun
    • 한국결정성장학회지
    • /
    • 제9권5호
    • /
    • pp.504-509
    • /
    • 1999
  • In-situ cleaning and subsequent silicon epitaxial film growth were performed in a load-locked reactor equipped with Hg-grid UV lamp and PBN heater to obtain the smooth and contaminant-free underlying surface and develop low-temperature epitaxial film growth process. The removals of organic and native oxide were investigated using UV-excited $O_2$ and $NF_{3}/H_{2}$, and the effect of the surface condition was examined on the quality of silicon epitaxial film grown at temperature as low as $750^{\circ}C$. UV-excited gas phase cleaning was found to be effective in removing the organic and native oxide successfully providing a smooth surface with RMS roughness of 0.5$\AA$ at optimal condition. Crystalline quality of epitaxial film was determined by smoothness of cleaned surface and the presence of native oxide and impurity. Crystalline defects such as dislocation loops or voids due to the surface roughness were observed by XTEM.

  • PDF

Lamp ZMR에 의한 SOI에서 비대칭 선형가열의 효과 (Effect of Asymmetric Line Heating in SOI Lamp ZMR)

  • 반효동;이시우;임인곤;주승기
    • 한국결정성장학회지
    • /
    • 제2권2호
    • /
    • pp.53-62
    • /
    • 1992
  • SOI구조 형성을 위항 대용융 재결정(ZMR) 공정에서 타원형의 반사경을 기울여 빔강도분포를 인위적으로 변화시켜 실리콘 박막을 재결정시켰다. 비대칭 선형가열 효과를 해석하기 위하여 전산모사를 행하여 응고계면 근처에서의 온도분포와 열구배 변화를 조사하였다. 상부집속열원의 경사각이 증가할수록 액상의 과냉도와 실리콘 박막내의 결함열 간격은 증가하였다. 주된 결함은 연속적인 아결정립계였고 결함밀도가 낮은 경우는 isolated threading dislocations만이 관찰되었다. 단면 TEM과 박막 XRD 분석결과 실리콘 박막은 (100) 집합조직을 갖는 단결정 박막으로 재결정되었음을 확인할 수 있었다.

  • PDF

SiNx/Si 구조를 이용한 SiC 박막성장 (Growth of SiC film on SiNx/Si Structure)

  • 김광철;박찬일;남기석;임기영
    • 한국재료학회지
    • /
    • 제10권4호
    • /
    • pp.276-281
    • /
    • 2000
  • Si(111) 표면을 NH$_3$분위기에서 실리콘질화물(SiNx)로 변형시킨 후 탄화규소(silicon carbide, SiC) 박막을 성장하였다. 질화시간이 증가함에 따라 SiC 박막 두께가 감소함을 관찰하였다. 또한 성장변수에 따라 SiC/Si 계면에서 결정결함인 틈새를 없앨 수 있었다. 100nm, 300nm, 500nm의 SiNx/Si 기판 위에 SiC 박막을 성장시켰다. 성장된 SiC 박막들은 모두 [111]면을 따라 성장되었고, SiC 결정들이 원주형 낟알로 성장되었다. SiC/SiNx 계면에서 void를 관찰할 수 없었다. 이러한 실험 결과는 SOI 구조의 산화규소를 SiNx로 대체함으로써 SiC 소자 제작에 응용될 수 있는 방향을 제시하고 있다.

  • PDF

피코초 레이저 및 CDE를 이용한 TSV가공기술 (TSV Formation using Pico-second Laser and CDE)

  • 신동식;서정;조용권;이내응
    • 한국레이저가공학회지
    • /
    • 제14권4호
    • /
    • pp.14-20
    • /
    • 2011
  • The advantage of using lasers for through silicon via (TSV) drilling is that they allow higher flexibility during manufacturing because vacuums, lithography, and masks are not required; furthermore, the lasers can be applied to metal and dielectric layers other than silicon. However, conventional nanosecond lasers have disadvantages including that they can cause heat affection around the target area. In contrast, the use of a picosecond laser enables the precise generation of TSVs with a smaller heat affected zone. In this study, a comparison of the thermal and crystallographic defect around laser-drilled holes when using a picosecond laser beam with varing a fluence and repetition rate was conducted. Notably, the higher fluence and repetition rate picosecond laser process increased the experimentally recast layer, surface debris, and dislocation around the hole better than the high fluence and repetition rate. These findings suggest that even the picosecond laser has a heat accumulation effect under high fluence and short pulse interval conditions. To eliminate these defects under the high speed process, the CDE (chemical downstream etching) process was employed and it can prove the possibility to applicate to the TSV industry.

  • PDF

The formation mechanism of grown-in defects in CZ silicon crystals based on thermal gradients measured by thermocouples near growth interfaces

  • Abe, Takao
    • 한국결정성장학회지
    • /
    • 제9권4호
    • /
    • pp.402-416
    • /
    • 1999
  • The thermal distributions near the growth interface of 150nm CZ crystals were measured by three thermocouples installed at the center, middle (half radius) and edge (10nm from surface) of the crystals. The results show that larger growth rates produced smaller thermal gradients. This contradicts the widely used heat flux balance equation. Using this fact, it is confirmed in CZ crystals that the type of point defects created is determined by the value of the thermal gradient(G) near the interface during growth, as already reported for FZ crystals. Although depending on the growth systems the effective length of the thermal gradient for defect generation are varied, we defined the effective length as 10n,\m from th interface in this experiment. If the G is roughly smaller than 20C/cm, vacancy rich CZ crystals are produced. If G is larger than 25C/cm, the species of point defects changes dramatically from vacancies to interstitials. The experimental results after detaching FZ and CZ crystals from the melt show that growth interfaces are filled with vacancies. We propose that large G produces shrunk lattice spacing and in order to relax such lattice excess interstitials are necessary. Such interstitials recombine with vacancies which were generated at the growth interface, nest occupy interstitial sites and residuals aggregate themselves to make stacking faults and dislocation loops during cooling. The shape of the growth interface is also determined by te distributions of G across the interface. That is, the small G and the large G in the center induce concave and convex interfaces to the melts, respectively.

  • PDF