• Title/Summary/Keyword: silica fume concrete

Search Result 497, Processing Time 0.022 seconds

Repair and Retrofit System of Concrete Structures using Fiber Glass and Epoxy Composite Sheets, Improved Through Utilization of Silica fume and Mechanical Saturator (실리카흄과 현장기계함침을 이용한 유리섬유 복합재(CAF)의 콘크리트 구조물 보수보강공법)

  • 유용하;권성준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.785-792
    • /
    • 2000
  • Repair and retrofit system of concrete structures has been developed from conventional reinforced concrete overlaying, steel plate bonding and recently to fiber composite systems. Research and study on carbon, aramid, and glass fiber composite system has been actively carried out from all over the world Glass fiber composite is proved to be competitive technically and enconomically, among fiber composite system. CAF system is a system developed locally using all domestic materal, glass fabric and epoxy, and improved in shear bonding property by utilizing silica fume mixed with epoxy. All the tests on material properties, structural behavior, constructiveness at site and quality control procedure proved to be most appropriate system so far developed. Futher research work is and will be under progress for utilization of this system which will be applied to more adverse situation.

  • PDF

The Investigation for the Possibility to Utility on the Natural Zeolite and Mud Stone as Admisxture (혼화재로서 천연제올라이트 및 이암의 활용성 검토에 관한 연구)

  • 김화중;김태섭;박정민;한종훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.167-172
    • /
    • 1993
  • In domestic, there are not adequate admixtures for concrete now, so the study on that is required deeply, Accordingly the purpose of this study is to analyze the application possibilities of Natural Zeolite and Mud Stone as admixtures for concrete through comparing the compressive strength prorerties of mortar mixed with imported Silica Fume those mixed with domestic Zeolite and Mud Stone. As the results from this study, the optimum displacement rate of Silica Fume, Zeolite and Mud Stone is 15%, 5~10%, 15% respectively. In Zeolite and Mud Stone, the compressive strength is higher in proportion as the powder is fine. Consequentely, the application possibility the application possibility of Zeolite and Mud Stone is very sufficient as admixtures for concrete.

  • PDF

A new strength model for the high-performance fiber reinforced concrete

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • Steel fiber reinforced concrete is increasingly used day by day in various structural applications. An extensive experimentation was carried out with w/cm ratio ranging from 0.25 to 0.40, and fiber content ranging from zero to1.5 percent by volume with an aspect ratio of 80 and silica fume replacement at 5%, 10% and 15%. The influence of steel fiber content in terms of fiber reinforcing index on the compressive strength of high-performance fiber reinforced concrete (HPFRC) with strength ranging from 45 85 MPa is presented. Based on the test results, equations are proposed using statistical methods to predict 28-day strength of HPFRC effecting the fiber addition in terms of fiber reinforcing index. A strength model proposed by modifying the mix design procedure, can utilize the optimum water content and efficiency factor of pozzolan. To examine the validity of the proposed strength model, the experimental results were compared with the values predicted by the model and the absolute variation obtained was within 5 percent.

An Experimental Study on the Carbonation of concrete using various Admixture Additives (각종 혼합재를 첨가한 콘크리트의 중성화에 관한 실험적 연구)

  • 최광윤;배수환;장재동;이도헌;윤재환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.787-792
    • /
    • 2003
  • The purpose of this study is to suggest the fundamental data of durability which effects on the Carbonation of concrete by adding various admixture additives. Thus, We have experimented the accelerated test on the concrete blending which was admixed by blast furnace slag, fly-ash, silica fume , durability amelioration and it was cured 7weeks after twenty eight days water curing. The result of this experiment is that Carbonation speed increased extremely when water cement ratio went up, and by growing of replace cement ratio of admixture additives. The specimen which was added fly-ash, blast furnace slag, silica fume has the faster Carbonation speed than the specimen which was not added admixture additives. All of these specimen, fly-ash has the fastest progress speed.

  • PDF

An Experimental Study on the Basic Properties of Lightweight Concrete Secondary Products by Admixture (혼화재료를 이용한 경량콘크리트 2차 제품의 제작을 위한 기초적 물성에 관한 실험적 연구)

  • 김영진;공민호;김광기;강태경;임남기;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.775-780
    • /
    • 2003
  • The propose of this study is to discover concrete secondary products for proper mixing by lightweight concrete. The standard of water ratio 50% and weight substition 0%, 10%, 20% by Fly-ash. When produce manufactures, there use for maintain its form weight substition and addition among the viscosity agent each Silica-fume and Hydroxy propyl methyl cellulos. Testing method was to operate slump, air content, compressive strength test, rapid freezing and thawing test. The result of this study is appeared when substition Fly-ash generally it had better use Silica-fume.

  • PDF

An Experimental Study on the Salt Damage Resistance of High Durable Concrete (고내구성콘크리트의 염해저항성에 관한 실험적 연구)

  • Yoon, Jai-Hwan;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 2003
  • In this paper, salt damage resistance of high durable concrete was tested. High durable concrete was made by using low water cement ratio, chemical admixture called super-durable admixture and mineral admixtures such as fly-ash, ground granulated blast-furnace slag, silica fume. Two kinds of salt damage resistance test were carried out. One method is chloride ion penetration test(ASTM C1202), and the other one is depth of chloride penetration test in saline solution. Test results were as followers: 1) The depth of chloride ion penetration increased exponentially as water cement ratio was increased and time passed. 2) Super-durable admixture had little effect on the improvement of salt damage resistance of concrete. 3) Silica fume and ground granulated blast-furnace slag were effective on salt damage resistance because of pozzolanic reaction, but fly-ash had a little effect.

An Experimental Study on the Mechanical Properties of Silica Fume and Fly Ash.Cement Composites (실리카흄 및 플라이애쉬.시멘트 복합체의 역학적 특성에 관한 실험적 연구)

  • 박승범;윤의식
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.158-170
    • /
    • 1994
  • The results of an experimental study on the manufacture and the mechanical properties of carbon fiber rekforced silica fume . cement composites and light weight fly ash . cement composites are presented in this paper. 11s the test results show, the flexural strength, fracture toughness and ductility of CF reinforced silica fume . cement composites were remarkably increased by the increase of carbon fiber contents. And the workability of the fly ash . cement composites were improved, but the compressive and flexural strength and bulk specific gravity of them are decreased by increasing the ratio of fly ash to cement. And the compressive and flexural strength of the fly ash cement composites by cured under the hot water were improved than those by mositure cured. Also, the manufacturing process technology of lightweight fly ash . cement composites in replacement of general autoclaved lightweight concrete was developed and its optimum mix proportions were proposed.

Effect of Relative Levels of Mineral Admixtures on Strength of Concrete with Ternary Cement Blend

  • Mala, Kanchan;Mullick, A.K.;Jain, K.K.;Singh, P.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.239-249
    • /
    • 2013
  • In the present scenario to fulfill the demands of sustainable construction, concrete made with multi-blended cement system of OPC and different mineral admixtures, is the judicious choice for the construction industry. Silica fume (SF) and fly ash (FA) are the most commonly used mineral admixtures in ternary blend cement systems. Synergy between the contributions of both on the mechanical properties of the concrete is an important factor. This study reports the effect of replacement of OPC by fly ash (20, 30, 40 and 50 % replacement of OPC) and/or silica fume (7 and 10 %) on the mechanical properties of concrete like compressive strength and split tensile strength, with three different w/b ratio of 0.3, 0.4 and 0.45. The results indicate that, as the total replacement level of OPC in concrete using ternary blend of OPC + FA + SF increases, the strength with respect to control mix increases up to certain replacement level and thereafter decreases. If the cement content of control mixes at each w/b ratio is kept constant, then as w/b ratio decreases, higher percentage of OPC can be replaced with FA + SF to get 28 days strength comparable to the control mix. A new method was proposed to find the efficiency factor of SF and FA individually in ternary blend cement system, based on principle of modified Bolomey's equation for predicting compressive strength of concrete using binary blend cement system. Efficiency factor for SF and FA were always higher in ternary blend cement system than their respective binary blend cement system. Split tensile strength of concrete using binary and ternary cement system were higher than OPC for a given compressive strength level.

Flexural and Workable Properties of High Performance Hybrid Fiber Reinforced Concrete (고성능 하이브리드 섬유 보강 콘크리트의 휨 및 유동 특성)

  • Park Choon-Keun;Noh Myung-Hyun;Park Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.543-550
    • /
    • 2005
  • In the present work, modulus of rupture (MOR), flexural toughness properties $(I_{30}\;and\;W_{2.0})$ and workability (slump) of high performance hybrid fiber reinforced concrete (HPHFRC) mixed with micro-fiber (carbon fiber) and macro-fiber (steel fiber), and replaced with a fine mineral admixture such as silica fume (SF) are characterized through the analysis of variance (ANOVA). Data of MOR, $I_{30}(or W_{2.0})$ and slump are used as the characteristic values to estimate flexural performance and workable property of HPHFRC. Specially, an experimental design was Planned according to the fractional orthogoanl nay method to reduce experimental number of times. The experimental results show that steel fiber is a considerable significant factor in MOR and I30 $(W_{2.0})$. Based on the significance of experimental factors about each characteristic factors, the following evaluation can be used: Experiment factors which reduce slump most remarkably are carbon fiber, steel fiber, silica fume order.; Those that improve MOR most significantly are silica fume $({\fallingdotseq}\;carbon\;fiber)$, steel fiber order; Those that increase flexural toughness most distinctly are silica fume, carbon fiber, steel fiber order. It is obtained that the combination of steel fiber $1.0\%$, carbon fiber $0.25\%$ and silica fume $5.0\%$ is the experimental condition that improve MOR and flexural toughness excellently with workability ensured within the experiment.

Effectiveness of mineral additives in mitigating alkali-silica reaction in mortar

  • Nayir, Safa;Erdogdu, Sakir;Kurbetci, Sirin
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.705-710
    • /
    • 2017
  • The effectiveness of mineral additives in suppressing alkali-silica reactivity has been studied in this work. Experimentation has been performed in accordance with the procedures prescribed in ASTM C 1567. In the scope of the investigation, a quarry aggregate which was reactive according to ASTM C 1260 was tested. In the experimental program, prismatic mortar specimens measuring $25{\times}25{\times}285mm$ were produced. Ten sets of production, three specimens for each set, were made. Length changes were measured at the end of 3, 7, 14 and 28 days and then expansions in percentage have been calculated. Fly ash, silica fume, and metakaolin have been used as cement replacement in different ratios for the testing of the alkali-silicate reactivity of the aggregate. In the mixes performed, the replacement ratios were 20%, 40%, and 60% for the fly ash, and 5%, 10%, and 15% for the silica fume, and 5%, 10%, and 15% for the metakaolin. Mixes without mineral additives were also produced for comparison. The beneficial effect in suppressing alkali-silica reactivity is highly noticeable as the replacement ratios of the mineral additives increase regardless of the type of the mineral additive used. Being more concise, the optimum concentrations of using silica fume and metakaolin in mortar in suppressing ASR is 10%, respectively, while it is 20% for fly ash.