• Title/Summary/Keyword: silica fume concrete

Search Result 497, Processing Time 0.024 seconds

An Experimental Study on the Flowing and Strength Properties of Concrete using Meta kaolin (메타카올린을 사용한 콘크리트의 유동특성 및 강도특성에 관한 실험적 연구)

  • Lee Byung-Soo;Lee Sang-Soo;Song Ha-Young;Kim Eul-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.425-428
    • /
    • 2005
  • In this study, the experiment was carried out to investigate and analyze the strength properties and flowability of concrete using meta kaolin. The main experimental variables were water/binder ratio 40.0$\%$, water content 170kg/$m^{3}$ and mineral admixtures such as slag powder, silica fume and meta kaolin. According to the test results, the principle conclusions are summarized as follows. 1) The flowing property of concrete that uses meta kaolin appears to be the same to that of the silica fume concrete, but the slump flow that evaluates the compaction ability of concrete shows the most favorable performance. 2) The air content of the concrete that uses meta kaolin can be effectively controlled for the target performance in compliance with the use of AE agent. 3) When it comes to the strength of concrete that uses meta kaolin, the most favorable development of strength occurs when the replacement rate is 10$\%$, in case of the silica fume, and the slag power. In addition, as the replacement rate increases, so becomes the development of concrete strength favorable.

  • PDF

Increase of strength and freezing-thawing resistance of porous concrete by Silica-fume (실리카흄을 사용(使用)한 투수(透水)콘크리트의 강도(强度) 및 동결융해저항성(凍結融解抵抗性))

  • Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.35-40
    • /
    • 2010
  • Existing porous concrete has problems with reduction of strength due to freezing and thawing and exfoliation of aggregate at joints. In this study, a method for increasing strength and durability of porous concrete by using fine aggregate, silica-fume and high-range water-reducing agent was proposed by laboratory tests. Mixing ratio between silica-fume (10%) and fine aggregate (0%, 7%, 15%) was selected as a major test factor, and laboratory tests for compressive strength, flexural strength, permeability coefficient, porosity, freezing and thawing were conducted. Compressive strength and flexural strength were increased as the mixing ratio of fine aggregate was increased. However, permeability and freezing-thawing resistance were decreased due to reduction of porosity. Therefore, the ratio of fine aggregate should be limited to increase strength and durability of the porous concrete, while the mixing ratio of silica-fume should be over 10%.

The basic study for the proposal standard of Nano-Slag on an alternation material for Silica-fume (실리카퓸 대체 재료로서 나노슬래그의 규격제안을 위한 기초적 연구)

  • Heo, Jae-Won;Im, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.67-71
    • /
    • 2008
  • Blast Furnace slag a pigiron waste that is produced more than 800 thousand tons per year, and micronized double quenching blast furnace slag improves flexibility of concrete, and even shows improvement effect of long-term intensity. However, the concrete that used micronized double quenching blast furnace slag is restricted in its use because of many problems to assure early intensity. Even micronized blast furnace slag can assure its early intensity of concrete when maximizing, and is considered that can be applied in high strength of blast furnace slag as an alternation material for Silica-fume that depends on overall import. Hereby this paper is revised activity index and fluidity of mortar that used Nano Slag that is produced by rotten Nano crush equipment to propose its size, and possible utility of Nano Slag that was produced by blast furnace slag made in Korea as an alternation material, with the conclusion as following. 1. To measure micronized Nano slag, it is judged that it should be in progress with BET method that is based on micronized Silica-fume for concrete. 2. As a result, the test based on KS L ISO 679 is shown to satisfy the basic additive size of KS F 2563 and of KS F 2567, and to determine new combination of stipulations. 3. The strength development of Nano Slag was shown excellent in the daily initial installment of 1, 3, 7 days against the basic additive. This is judged that contains CaO controlling initial strength against Silica-fume, and contributes to higher fineness than the basic blast furnace slag 1 type.

  • PDF

Quantitative Analysis of Hydrate products of the Cement Paste Mixed with Admixtures (혼화재 혼입 시멘트 페이스트의 수화생성물 정량 분석)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.176-177
    • /
    • 2021
  • In order to compensate for the defects of concrete made using only Portland cement, three-component powder mixed with blast slag and fly ash, and four-component powder concrete mixed with silica fume are being produced. When each of the admixtures is used alone, the above-described excellent performance is expressed and up to 70% of the powder is used. These technologies are also contributing to the reduction of greenhouse gases under Act on Low Carbon. Green Growth. However, calcium hydroxide is consumed as a stimulator or reaction in the case of silica fume, which causes latent hydroponicity of slag, pozzolane reaction, and silica mixtures represented by fly ash. It is known that the consumption of calcium hydroxide affects the alkalinity of concrete. As a result, the carbonation resistance is significantly lower among the durability of concrete. Research on quantification of such effects is insufficient. In this study, an experiment was conducted to quantify calcium hydroxide of the three-component and four-component powder paste using thermal analysis equipment (DTG), and the effect of the mixing amount was discussed.

  • PDF

Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results

  • Shuraim, Ahmed B.;Aslam, Fahid;Hussain, Raja R.;Alhozaimy, Abdulrahman M.
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.739-760
    • /
    • 2016
  • This paper reports on punching shear behavior of reinforced concrete panels, investigated experimentally and through finite element simulation. The aim of the study was to examine the punching shear of high strength concrete panels incorporating different types of aggregate and silica fume, in order to assess the validity of the existing code models with respect to the role of compressive and tensile strength of high strength concrete. The variables in concrete mix design include three types of coarse aggregates and three water-cementitious ratios, and ten-percent replacement of silica fume. The experimental results were compared with the results produced by empirical prediction equations of a number of widely used codes of practice. The prediction of the punching shear capacity of high strength concrete using the equations listed in this study, pointed to a potential unsafe design in some of them. This may be a reflection of the overestimation of the contribution of compressive strength and the negligence of the role of flexural reinforcement. The overall findings clearly indicated that the extrapolation of the relationships that were developed for normal strength concrete are not valid for high strength concrete within the scope of this study and that finite element simulation can provide a better alternative to empirical code Equations.

Investigating the combination of natural and crushed gravel on the fresh and hardened properties of self-compacting concrete

  • Moosa Mazloom;Mohammad Ebrahim Charmsazi;Mohammad Hosein Parhizkari
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Self-compacting concrete is widely used around the globe today due to its special and unique properties. This study examines the effect of natural and crushed gravel combinations in different percentages in short-and long-term properties of concrete. The best utilized sand had a fineness modulus of 2.7. In the mentioned mix designs, silica fume was used with 0 and 7% of the weight of the cement. In order to check the properties of fresh and hardened concrete, 9 and 5 test types were performed, respectively. The carried out tests were slump flow, V-funnel, J-ring, L-box, U-box and column segregation for fresh concrete, and compressive, tensile and flexural strengths for hardened concrete. A mix with only 100% natural gravel was considered as the control mix. According to the results, the control mix design and the one containing 100% crushed gravel with silica fume were the best in fresh and hardened concrete tests, respectively. Finally, using the optimization method, a mix design with 25% natural gravel, 75% crushed gravel and silica fume was introduced as the best mix in terms of the results of both fresh and hardened concrete tests.

A Study on the Waterproof Properties of Cement Mortar with the Addition Rate of the Inorganic Admixture and Zinc Stearate (무기질 혼화재 및 금속비누의 혼입률 변화에 따른 시멘트 모르터의 방수 특성에 관한 연구)

  • Choi, Hoon;Jiang, Yi-Long;Han, Min-Cheol;Ryu, Hyun-Ki;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.139-144
    • /
    • 1998
  • This study is intended to devolop the self waterproof agents for high performance concrete by analyzing the properties of fresh and hardened mortar with various addition ratios of the inorganic admixture and zinc stearate. As the results of the test, the flow and air content increase with the addition of expansive additives. When the replacement rate of silica fume increases, the flow decreases for the increased viscidity. And the flow and sir content decrease with the addition of zinc stearate. At hardened state, the compressive strength, tensile strength and flexual strength decrease with the addition of expansive additives and zinc stearate. With the increase of silica fume's replacement, they show a little decrease at early age and then increase gradually. Also, absorption and permeability show a steep decrease when zinc stearate is added, and a slack decrease with the replacement of silica fume.

  • PDF

A Fundamental Study of Metakaolin as a Pozzolanic Material (콘크리트 혼화재료로서의 메타카올린의 기초적인 특성 연구)

  • 김용태;안태호;강범구;이정율;김병기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.281-286
    • /
    • 2001
  • The utilization of metakaolin as a pozzolanic material for mortar and concrete has received considerable attention in recent years. This paper estimates the fundamental properties of metakaolin as a pozzolanic material in view of fluidity and compressive strength of cement paste and mortar in comparison of silica fume, fly ash and slag. The results show that in order to obtain the same initial fluidity, metakaolin needs higher dosage of PNS superplasticizer than fly ash and slag, however, less dosage than silica fume. In view of compressive strength of mortar, metakaolin exhibits much higher compressive strength than fly ash and slag, and similar compressive strength with silica-fume when 10 % of cement is replaced with a pozzolanic material.

  • PDF

Effect of Silica Fume in Properties of Polymer Cement Mortar for Concrete Repair (실리카 퓸이 보수용 폴리머 시멘트 모르타르의 성질에 미치는 영향)

  • Song, Hyung-Soo;Lee, Chin-Yong;Min, Chang-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.617-620
    • /
    • 2006
  • The EVA polymer is used as a modifier in the repair mortar, which contains various admixtures and mineral admixtures. It has been reported that the effect of polymer in cement mortar by the cement-polymer ratio only, but effect of admixtures over the polymer mortar was unknown. In this study, the fresh and mechanical properties of polymer cement mortar influenced by the range of silica fume ratio were investigated. It was found that with increasing the ratio of silica fume, mechanical properties(compressive strength, flexural strength, adhesive strength) of repair mortar is improved and drying shrinkage is increased.

  • PDF

A Study on the Improvements of Strengths of Water-Permeable Concrete (투수성 콘크리트의 강도개선에 관한 연구)

  • 은재기;이철웅;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.307-312
    • /
    • 1999
  • The purpose of this study is to ascertain the strength properties of water-permeable concrete with redispersible polymer powder, silica fume and polypropylene fibers. The water-permeable concrete using rediapersibel polymer powder with a water-cement ratio of 25%, polymer-cement ratios of 0 to 10%, silica fume contents of 0 to 10% and fiber contents of 0 to 1.5% are prepared, and tested for flexural strength, compressive strength and water permeability. From the test results, improvements in the strength properties of the water-permeable concrete due to the addition of the redispersible polymer powder, silica fume and fibers are discussed. It is concluded from the test results that the superior flexural and compressive strengths of water-permeable concretes are obtained at a propylene fiber content of 1.0% with a void filling ratio of 50%. And, the water-permeable concrete having a flexural strength of 15.6~28.4kgf/$\textrm{cm}^2$, a compressive strength of 63.5~120.6kgf/$\textrm{cm}^2$, and a coefficient of permeability of 1.14~1.70cm/s at a void filling ratio of 30% can be prepared. Also water-permeable concrete having a flexural strength of 35.6~57.9kgf/$\textrm{cm}^2$, a compressive strength of 164.0~290.0kgf/$\textrm{cm}^2$, and a coefficient of permeability of 0.19~1.04cm/s at a void filling ratio of 50% can be prepared in the consideration of the mix proprotioning factors.

  • PDF