• Title/Summary/Keyword: signal reconstruction

Search Result 425, Processing Time 0.024 seconds

Development of Nuclear Power Plant Instrumentation Signal Faults Identification Algorithm (원전 계측 신호 오류 식별 알고리즘 개발)

  • Kim, SeungGeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.6
    • /
    • pp.1-13
    • /
    • 2020
  • In this paper, the author proposed a nuclear power plant (NPP) instrumentation signal faults identification algorithm. A variational autoencoder (VAE)-based model is trained by using only normal dataset as same as existing anomaly detection method, and trained model predicts which signal within the entire signal set is anomalous. Classification of anomalous signals is performed based on the reconstruction error for each kind of signal and partial derivatives of reconstruction error with respect to the specific part of an input. Simulation was conducted to acquire the data for the experiments. Through the experiments, it was identified that the proposed signal fault identification method can specify the anomalous signals within acceptable range of error.

Probabilistic Exclusion Based Orthogonal Matching Pursuit Algorithm for Sparse Signal Reconstruction (희소 신호의 복원을 위한 확률적 배제 기반의 직교 정합 추구 알고리듬)

  • Kim, Seehyun
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.339-345
    • /
    • 2013
  • In this paper, the probabilistic exclusion based orthogonal matching pursuit (PEOMP) algorithm for the sparse signal reconstruction is proposed. Some of recent greedy algorithms such as CoSaMP, gOMP, BAOMP improved the reconstruction performance by deleting unsuitable atoms at each iteration. They still often fail to converge to the solution because the support set could not escape from a local minimum. PEOMP helps to escape by excluding a random atom in the support set according to a well-chosen probability function. Experimental results show that PEOMP outperforms several OMP based algorithms and the $l_1$ optimization method in terms of exact reconstruction probability.

Comparison of artificial intelligence models reconstructing missing wind signals in deep-cutting gorges

  • Zhen Wang;Jinsong Zhu;Ziyue Lu;Zhitian Zhang
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.75-91
    • /
    • 2024
  • Reliable wind signal reconstruction can be beneficial to the operational safety of long-span bridges. Non-Gaussian characteristics of wind signals make the reconstruction process challenging. In this paper, non-Gaussian wind signals are converted into a combined prediction of two kinds of features, actual wind speeds and wind angles of attack. First, two decomposition techniques, empirical mode decomposition (EMD) and variational mode decomposition (VMD), are introduced to decompose wind signals into intrinsic mode functions (IMFs) to reduce the randomness of wind signals. Their principles and applicability are also discussed. Then, four artificial intelligence (AI) algorithms are utilized for wind signal reconstruction by combining the particle swarm optimization (PSO) algorithm with back propagation neural network (BPNN), support vector regression (SVR), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), respectively. Measured wind signals from a bridge site in a deep-cutting gorge are taken as experimental subjects. The results showed that the reconstruction error of high-frequency components of EMD is too large. On the contrary, VMD fully extracts the multiscale rules of the signal, reduces the component complexity. The combination of VMD-PSO-Bi-LSTM is demonstrated to be the most effective among all hybrid models.

Performance Analysis of Compressed Sensing Given Insufficient Random Measurements

  • Rateb, Ahmad M.;Syed-Yusof, Sharifah Kamilah
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.200-206
    • /
    • 2013
  • Most of the literature on compressed sensing has not paid enough attention to scenarios in which the number of acquired measurements is insufficient to satisfy minimal exact reconstruction requirements. In practice, encountering such scenarios is highly likely, either intentionally or unintentionally, that is, due to high sensing cost or to the lack of knowledge of signal properties. We analyze signal reconstruction performance in this setting. The main result is an expression of the reconstruction error as a function of the number of acquired measurements.

A Study on Reconstruction of Degraded Signal using Wavelet Transform (웨이브렛 변환을 이용한 훼손된 신호의 복원에 관한 연구)

  • Kim Nam-Ho;Bae Sang-Bum;Ryu Ji-Goo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Degradation is generated by several causes in the process of digitalization or transmission of data. And its essential cause is noise. Therefore, researches for wavelet-based methods which reconstruct signal degraded by noise have continued. In AWGN(addtive white gaussian noise) environment, the general trend for denoising is to use the thresholding method. Reconstructed signal includes a lot of noise because these methods only consider statistical characteristic regarding noise. In this paper, we present a new method which uses the cumulation of wavelet detail coefficients. As a result, reconstruction of edges and denoising performance are improved. Also we compare existing methods using SNR(signal-to-noise ratio) as the standard of judgement of improvemental effect.

  • PDF

Quantization Error of Image Signal by Using QMF (QMF를 이용한 영상 양자화오차)

  • 오영훈;권락범;박남천
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.85-88
    • /
    • 2000
  • Signal splitting and perfect reconstruction in subband coding is based on the assumption that quantization errors are negligible. But if subband signal is quantized, 4 types of errors occurs thus it is not impossible to do perfect reconstruction. These errors are QMF design error, aliasing error, signal error and random error. By using the QMF for subband splitting, the QMF error does not present. and by using the Lloyd-Max quantizer for the quantization and by using an appropriate synthesis filter, all signal dependent errors can be cancelled and the remaining error is random error which is uncorrelated with the original image〔1〕. In this thesis, Lenna and Camera-Man image are devided into 10 subbands by using the D4 and D20 wavelet And the subband signals are quantized by using the Lloyd-Max quantizer and the quantization errors are compared. and evaluated.

  • PDF

Block Sparse Signals Recovery via Block Backtracking-Based Matching Pursuit Method

  • Qi, Rui;Zhang, Yujie;Li, Hongwei
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.360-369
    • /
    • 2017
  • In this paper, a new iterative algorithm for reconstructing block sparse signals, called block backtracking-based adaptive orthogonal matching pursuit (BBAOMP) method, is proposed. Compared with existing methods, the BBAOMP method can bring some flexibility between computational complexity and reconstruction property by using the backtracking step. Another outstanding advantage of BBAOMP algorithm is that it can be done without another information of signal sparsity. Several experiments illustrate that the BBAOMP algorithm occupies certain superiority in terms of probability of exact reconstruction and running time.

Sub-Nyquist Nonuniform Sampling and Perfect Reconstruction of Speech Signals (음성신호의 Sub-Nyquist 비균일 표준화 및 완전 복구에 관한 연구)

  • Lee, He-Young
    • Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.153-170
    • /
    • 2005
  • The sub-Nyquist nonuniform sampling (SNNS) and the perfect reconstruction (PR) formula are proposed for the development of a systematic method to obtain minimal representation of a speech signal. In the proposed method, the instantaneous sampling frequency (ISF) varies, depending on the least upper boundary of spectral support of a speech signal in time-frequency domain (TFD). The definition of the instantaneous bandwidth (IB), which determines the ISF and is used for generating the set of samples that represent continuous-time signals perfectly, is given. Also, the spectral characteristics of the sampled data generated by the sub-Nyquist nonuniform sampling method is analyzed. The proposed method doesn't generate the redundant samples due to the time-varying property of the instantaneous bandwidth of a speech signal.

  • PDF

Fast Linearized Bregman Method for Compressed Sensing

  • Yang, Zhenzhen;Yang, Zhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2284-2298
    • /
    • 2013
  • In this paper, a fast and efficient signal reconstruction algorithm for solving the basis pursuit (BP) problem in compressed sensing (CS) is proposed. This fast linearized Bregman method (FLBM), which is inspired by the fast method of Beck et al., is based on the fact that the linearized Bregman method (LBM) is equivalent to a gradient descent method when applied to a certain formulation. The LBM requires $O(1/{\varepsilon})$ iterations to obtain an ${\varepsilon}$-optimal solution while the FLBM reduces this iteration complexity to $O(1/\sqrt{\varepsilon})$ and requiring almost the same computational effort on each iteration. Our experimental results show that the FLBM can be faster than some other existing signal reconstruction methods.

A Virtual Instrument Control System With Reconstruction Mechanism Of Faulty Signal (오류신호 보정기능을 가진 가상계측 제어시스템)

  • 정영수;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.311-314
    • /
    • 2003
  • This paper describes a virtual instrument system with faulty sensor reconstruction mechanism based on personal computer. This system consists of sensor control board using 16bit RISC machine, error signal reconstruction algorithm based on principal component analysis and auto tunned GUI interface according to the attached sensors. USB module is used for fast communication between PC and sensor controller. To show the veridity of the proposed system, the proposed system was applied to the developed sun tracker with 8 solar sensors.

  • PDF