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Abstract 
In this paper, a new iterative algorithm for reconstructing block sparse signals, called block backtracking-
based adaptive orthogonal matching pursuit (BBAOMP) method, is proposed. Compared with existing 
methods, the BBAOMP method can bring some flexibility between computational complexity and reconstruction 
property by using the backtracking step. Another outstanding advantage of BBAOMP algorithm is that it can 
be done without another information of signal sparsity. Several experiments illustrate that the BBAOMP 
algorithm occupies certain superiority in terms of probability of exact reconstruction and running time. 
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1. Introduction 

The last several decades have witnessed a large development of sparse signal recovery problems, 
which can be formulated as a linear underdetermined system. The compressed sensing (CS) involves 
recovery of the unknown sparse signal from this linear system [1]: y = Φx, where x is an unknown 
signal of length N, Φ ∈ RM×N (M<N) is the measurement matrix, y denotes the observation vector of 
length M . This problem has been widely applied in sparse channel estimation [2] and remote spectral 
sensing [3]. Since M<N, it is ill-posed to reconstruct x given y. Therefore, some extra conditions should 
be added to insure recovering x  uniquely. Candes and his colleagues [4,5] stated that if x  is a K 
sparse signal (K<<N), that means sparse signal x  has at most K  non-zero elements, then exact 
recovery is possible by using basis pursuit (BP) method [6,7]. 

Nowadays, many greedy algorithms have been proposed, such as orthogonal pursuit (OMP) [8], 
stagewise orthogonal matching pursuit (StOMP) [9], regularized orthogonal matching pursuit (ROMP) 
[10], compressive sampling matching pursuit (CoSaMP) [11], subspace pursuit (SP) [12], etc. Unlike 
above algorithms that the sparsity K should to be known in advance, backtracking-based adaptive 
OMP (BAOMP) [13] can adaptively estimate the sparsity K  of original signal. Moreover, convex 
algorithm like smoothed 0  norm (SL0) [14] has also been tested to be effective. 
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The unknown sparse signals x  with block sparsity are considered in this paper, the structures of x
can be written as follows: 
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where T[ ]x   denotes the  -th block of x  with length d .  

A vector x  is called block K  sparse if [ ]x   has nonzero Euclidean norm for at most K  indices 
[15]. Specially, when 1d  , block sparse degenerates into a general case. Block sparse signal has been   
found in multi-band signals [16] and equalization of sparse communication channels [17], etc. 
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where 2

( [ ] 0)I x  is an indicator function. In this case, a block K  sparse vector x  is defined as 

2,0
Kx  [15]. It is known that we can recover the unique sparse signal x  by solving 2 0   norm  

problem [18]: 
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x    s.t. .y = Φx                                                                   (3) 

 
Unfortunately, finding the optimal solution of (3) is a NP-hard problem. One natural idea is to 

replace the 2 0   norm by 2 1   norm, that is: 
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x    s.t. y = Φx，                                                                 (4) 

 
where 
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i
i
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In [18], as an extension of BP method, the mixed 2 1   norm algorithm is proposed. Subsequently, 
many of iterative algorithms have been carried out for recovering block sparse signals [19], which solves 
a weighted 2 1   minimization in each iteration. The above two methods have good quality, but they 
are slow. Another convex method called BSL0 [20] is also tested to be effective. The second family of 
approaches are greedy algorithms, such as block OMP (BOMP) [15], block CoSaMP [21], block StOMP 
[22], they are very fast, but the sparsity should be known as a prior. The third kind of approaches are 
non-convex methods [23,24], it is shown that the non-convex methods surpass the mixed 2 1   norm 
algorithm. As shown in these papers, we find that it can provide better reconstruction performance by 
making use of block sparsity than regarding the block sparse signal as a general sparse case. Inspired by 
the technique of extension of OMP to BOMP, a block BAOMP (BBAOMP) method is introduced in 
this paper.  

The remainder of the paper is organized as follows. Section 2 depicts with reviewing BAOMP, and 
then describes the block version of BAOMP. Simulation results are given in Section 3 to compare the 
proposed algorithm with conventional OMP, SP, BOMP, BSLO, and BAOMP methods. Finally a 
conclusion is given in Section 4. 
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2. A Block Version of BAOMP  

In this section, we first review the algorithm of BAOMP, and a block version of BAOMP will be 
investigated in the next.  

As an extension of OMP algorithm, BAOMP was proposed by Huang and Makur [13]. The BAOMP 
algorithm first finds one or several atoms which corresponding to the much larger correlation between 
measurement vectors and the residual. To be mentioned, the atoms selected in the previous stage may 
be wrong. Subsequently, BAOMP method identifies the atoms which are wrongly chosen. By using this 
backtracking procedure, it refines the estimated support set. In the next, BAOMP method produces a 
new residual by using the least-square fit. The BAOMP method does not need the information of signal 
sparsity, it is repeated until the norm of residual is smaller than a threshold or the iteration count n  
reaches the number of maximum iteration.  

Because of the backtracking step, BAOMP algorithm gives double checks about how to choose the 
atom reliably, which yields much better sparse reconstruction performance. Moreover, the BAOMP 
method brings some flexibility between reconstruction property and computational complexity by 
adaptively adjusting parameters 1  and 2 . 

Generalizing the BAOMP algorithm to the block sparse signals, we obtain the BBAOMP algorithm. It 
first chooses several block indices, and then subtracts some wrong block indices, the final estimated 
support set will be identified after several iterations. The details about the BBAOMP algorithm are 
shown in Table 1. 

 
Table 1. BBAOMP algorithm 

Input:      measurement matrix: Φ RM N , measurement vector: y  
atom-adding threshold in [0,1] : 1  
atom-deleting threshold in [0,1] : 2  
convergence threshold:   
maximum iteration number: maxn  

Initialize: initial solution: 0x 0 , initial residual: 0r y  
estimated support set:   , iteration count: 1n    
candidate set: 0C   , delete set: 0   . 

While 
2
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Step 3: Update support set:   \n nC    ; 

Step 4: Projection and pursuit: x Φ yn 
   ; 

Step 5: Update the residual: r Φ xn ny    ; 1n n  ; 

Output: The estimate signal x̂ , where '\
ˆ
 

x 0  and x̂ Φ y
  . 
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At the nth iteration, the BBAOMP algorithm first finds the candidate set nC  whose norms of 

correlations between [ ]( )j j Φ  and the residual 1 1
1 ' 2

max , [ ]n n
j j 
 r r Φ , where Ω'={1,2,…,L} 

denotes the whole block indices. 1  is a constant which determines the number of block indices chosen 

at each time. When 1 1  , it is same as BOMP which selects only one block index corresponding to the 

maximal norm of correlations. When 1  becomes smaller, the BBAOMP algorithm can select more 

than one block index at each time, smaller 1  results in much more block indices and speeds up the 
algorithm. Unfortunately, the block indices selected at the above process may be wrong. At the next 

step, several block indices will be deleted. We first calculate n
n

C
x


 by using nC




Φ y


, and define 

x Rn Ld , where x x nn

n n
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


 , 
( )n c

n
C

x 0


 . Then the block indices whose norms of  [ ]n ix  are 

smaller than 2  times the maximal norm of  [ ]( )n j j x  will be removed, where 2  is a parameter 

determining the number of deleted block indices at each time. Similarly, bigger 2  results in smaller 
deleted block indices and slows down the algorithm. After updating the support set  , we produce a 
new residual by using the least-square fit. Due to the block sparsity K  is not known in advance, the 

BBAOMP algorithm is repeated until the norm of residual nr  is smaller than a threshold   or the 
iteration count n reaches the number of maximum iterations maxn . 

The most important difference between BOMP algorithm and the proposed algorithm is that the 
BBAOMP algorithm involves a backtracking step. Owing to the backtracking step, the BBAOMP 
algorithm gives double checks of the chosen atom’s accuracy, which yields much better reconstruction 
property. What’s more, there are two parameters 1  and 2  in the proposed method. Smaller 1  and 

bigger 2  result in smaller estimated support set at each time, which leads to better reconstruction 

performance and longer running time. On the contrary, bigger 1  and smaller 2  result in bigger 
estimated support set at each time, which leads to worse reconstruction performance and shorter 
running time.  

 
 

3. Experimental Simulations 

In this section, the reconstruction property of BBAOMP method is experimentally studied and is 
compared with OMP, BOMP, SP, BSL0, and BAOMP.  

 
3.1 Experimental Settings 
 

In each trial, the block sparse signal x  is artificially generated as follows: for a fixed sparsity K , the 
nonzero blocks are randomly chosen. Each element in the nonzero blocks is drawn from standard 
Gaussian distribution (0,1)N  and the elements of other blocks are zero. The observation vector is 

y = Φx , where the entries of sensing matrix Φ RM N  are generated from standard Gaussian 
distribution (0,1)N  independently. In all the simulations, M=128, N=256, and the block size d=2. 

To evaluate the estimation quality, we use a measure named signal-to-noise ratio SNR (in dB) defined 
as [20]:  
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SNR  ˆ10 log / ,x x x                                                               (5) 

 
where x  and x̂  denote the original and reconstructed signal, respectively. 

To be mentioned, each test is repeated 200 times, the values of the probability of exact reconstruction 

and running time are averaged. The reconstruction is viewed to be successful if 3
2

ˆ 10 x x in each 

trial. In the following experiments, the proposed method uses 1=0.4 , 2 =0.6 , maxn M , 6=10   as 

the input parameters. OMP and SP use the default setting given in [8,12], the parameters of BAOMP, 
BOMP and BSL0 are same to the paper [13,15,20]. 

 

3.2 Recovery Property versus Block Sparsity 
 

Fig. 1 shows each algorithm’s recovery probability under different block sparsity level. As shown in 
Fig. 1, the performance of BBAOMP algorithm surpasses another methods. When sparsity level 

25K  , all the algorithms start to fail besides BBAOMP method. Even if the block sparsity level 
40K  , the probability of reconstruction of  BBAOMP method is almost 50%. 

 

 
Fig. 1. The recovery probability versus block sparsity. 

 

In Fig. 2, compared with other methods, the running time of the above algorithms under different 
block sparsity level K is studied. It is clear from Fig. 2, the running time of BSL0, BOMP, BAOMP, and 
BBAOMP method is similar as block sparsity varies from 10 to 40. To be mentioned, the running time 
of BSL0 algorithm stays constant versus block sparsity, the reason is that the BSL0 is a convex 
optimization algorithm. In addition, as the block sparsity level varies from 10 to 40, the running time 
of the SP and OMP increases much faster than another algorithms. In particular, when block sparsity 
K > 25, the running time of SP seems to increase linearly over K. 
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Fig. 2. The probability of running time versus block sparsity. 

 

3.3 Recovery Property versus Number of Measurement 
 

 
Fig. 3. The recovery probability versus number of measurement M. 

 
In Fig. 3, the recovery probability is observed as a function of measurement M. The number of 

measurement M varies from 60 to 160 as the sparsity K is fixed to 25. As can be seen from Fig. 3, the 
recovery probability increases as number of measurement increases. We find that the proposed method 
surpasses another five methods. When the number of measurement is almost 115, the recovery 
probability of BBAOMP algorithm reaches 100%, while another five algorithms fail to recover original 
signal completely. 
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Fig. 4. The probability of running time versus number of measurement M. 

 
Fig. 4 describes the running time versus number of measurement M. Similarly, the running time of 

BSL0, BOMP, BAOMP, and BBAOMP methods is more or less similar as number of measurement 
varies from 60 to 160. The running time of BBAOMP algorithm first increases and then decreases, it 
reaches the maximum when number of measurement M is 95. Broadly speaking, the proposed method 
is computationally effective compared with another algorithms. 

 

3.4 Discussion on Number of Iterations 
 

 
Fig. 5. Number of iterations versus block sparsity. 

 
Fig. 5 depicts the number of iterations in terms of block sparsity. The number of iterations of 

BBAOMP algorithm is compared with another four algorithms (Note that BSL0 algorithm does not 
exist in this experiment, since it is a convex optimization algorithm). As shown in Fig. 5, we can see that 
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the numbers of iterations of the BBAOMP and BAOMP algorithms nearly stay constant as block 
sparsity level K increases, which outperform all other algorithms. In particular, while the numbers of 
iterations of the BOMP and OMP algorithms increase linearly over K , the SP algorithm seems to 
increase quadratically when K > 20. 

 
 

4. Conclusions 

In this article, we introduce a new sparse recovery algorithm which solving block sparse signal 
reconstruction problems. This method first chooses atoms adaptively and then removes some atoms 
that are wrongly chosen at the previous step by using backtracking procedure, which promotes the                
reconstruction property. In addition, the BBAOMP algorithm does not need the sparsity level as a prior. 
Simulation results demonstrate that our method produces much better reconstruction property 
compared with many existing algorithms. 

Thanks to the two parameters 1  and 2 , the BBAOMP method brings some flexibility between 
computational complexity and reconstruction property. However, we do not have theoretical support to 
determine how to select 1  and 2 . Future works include theoretical demonstration about the choice 
of parameters and numerical experiments by using actual data. 
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