• Title/Summary/Keyword: sign prediction

Search Result 72, Processing Time 0.025 seconds

Improvement of Korean Sign Language Recognition System by User Adaptation (사용자 적응을 통한 한국 수화 인식 시스템의 개선)

  • Jung, Seong-Hoon;Park, Kwang-Hyun;Bien, Zeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.301-303
    • /
    • 2007
  • This paper presents user adaptation methods to overcome limitations of a user-independent model and a user-dependent model in a Korean sign language recognition system. To adapt model parameters for unobserved states in hidden Markov models, we introduce new methods based on motion similarity and prediction from adaptation history so that we can achieve faster adaption and higher recognition rates comparing with previous methods.

  • PDF

Performance improvement of adaptivenoise canceller with the colored noise (유색잡음에 대한 적응잡음제거기의 성능향성)

  • 박장식;조성환;손경식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2339-2347
    • /
    • 1997
  • The performance of the adaptive noise canceller using LMS algorithm is degraded by the gradient noise due to target speech signals. An adaptive noise canceller with speech detector was proposed to reduce this performande degradation. The speech detector utilized the adaptive prediction-error filter adapted by the NLMS algorithm. This paper discusses to enhance the performance of the adaptive noise canceller forthecorlored noise. The affine projection algorithm, which is known as faster than NLMS algorithm for correlated signals, is used to adapt the adaptive filter and the adaptive prediction error filter. When the voice signals are detected by the speech detector, coefficients of adaptive filter are adapted by the sign-error afine projection algorithm which is modified to reduce the miaslignment of adaptive filter coefficients. Otherwirse, they are adapted by affine projection algorithm. To obtain better performance, the proper step size of sign-error affine projection algorithm is discussed. As resutls of computer simulation, it is shown that the performance of the proposed ANC is better than that of conventional one.

  • PDF

Development of Recognition and Reaction Time Prediction Model in Road Signs using Negative Binomial Regression (음이항회귀식을 이용한 도로표지의 인지반응시간 추정모형 개발)

  • Park, Hyung-Jin;Lee, Ki-Young;Kim, Jung-Young
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.23-33
    • /
    • 2006
  • The purpose of this study is to determine the economical standard of road signs by verifying the difference of driver's recognition and reaction time according to the space rate of letters on the road signs. For this reason, indoor simulations was conducted to confirm difference of recognition and reaction time on six sign-targets having different space rate. Also, a negative binomial regression model was used to find the main factors which could lower the rate of misreading. For this model, increasing of legibility of sign is not only simple enlargement of sign, but also suitable match of letters and sign. The result of this study is capable of verifying the importance of the space rate in road signs, and being utilized as a effective method to determine the standard of the road signs.

A TDOA Sign-Based Algorithm for Fast Sound Source Localization using an L-Shaped Microphone Array

  • Yiwere, Mariam;Rhee, Eun Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.3
    • /
    • pp.87-97
    • /
    • 2016
  • This paper proposes a fast sound source localization method using a TDOA sign-based algorithm. We present an L-shaped microphone set-up which creates four major regions in the range of $0^{\circ}{\sim}360^{\circ}$ by the intersection of the positive and negative regions of the individual microphone pairs. Then, we make an initial source region prediction based on the signs of two TDOA estimates before computing the azimuth value. Also, we apply a threshold and angle comparison to tackle the existing front-back confusion problem. Our experimental results show that the proposed method is comparable in accuracy to previous three microphone array methods; however, it takes a shorter computation time because we compute only two TDOA values.

Fast Convergence GRU Model for Sign Language Recognition

  • Subramanian, Barathi;Olimov, Bekhzod;Kim, Jeonghong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1257-1265
    • /
    • 2022
  • Recognition of sign language is challenging due to the occlusion of hands, accuracy of hand gestures, and high computational costs. In recent years, deep learning techniques have made significant advances in this field. Although these methods are larger and more complex, they cannot manage long-term sequential data and lack the ability to capture useful information through efficient information processing with faster convergence. In order to overcome these challenges, we propose a word-level sign language recognition (SLR) system that combines a real-time human pose detection library with the minimized version of the gated recurrent unit (GRU) model. Each gate unit is optimized by discarding the depth-weighted reset gate in GRU cells and considering only current input. Furthermore, we use sigmoid rather than hyperbolic tangent activation in standard GRUs due to performance loss associated with the former in deeper networks. Experimental results demonstrate that our pose-based optimized GRU (Pose-OGRU) outperforms the standard GRU model in terms of prediction accuracy, convergency, and information processing capability.

A Study on Improvement of Transform Coding Algoritm with 2-Source Decomposition of Interframe Prediction Errors Generated by Motion Compensated Hybrid Coding (BMA-DCT) (이동 보상형 복합 부호화 (BMA-DCT)에서 발생하는 프레임간 예측오차 전송기법의 신호 분리 및 변화부호하에 의한 성능 개선 연구)

  • Saw, Yoo-Sok;Park, Rae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.236-239
    • /
    • 1988
  • Prediction errors generated by motion compensated coding are coded with transform coding techniques as DCT. The performance of transform coding techniques are lowered mainly due to the source characteristics with a great deal of zero populations and plus-minus sign changes, i.e., low correlation. In this paper a transform coding scheme which adopts a decomposition of prediciton errors into two sources is proposed and compared its performance with conventional scheme.

  • PDF

A Study on the Convergence Characteristics Improvement of the Modified-Multiplication Free Adaptive Filer (변형 비적 적응 필터의 수렴 특성 개선에 관한 연구)

  • 김건호;윤달환;임제탁
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.6
    • /
    • pp.815-823
    • /
    • 1993
  • In this paper, the structure of modified multiplication-free adaptive filter(M-MADF) and convergence analysis are presented. To evaluate the performance of proposed M-MADF algorithm, fractionally spaced equalizer (FSE) is used. The input signals are quantized using DPCM and the reference signals is processed using a first-order linear prediction filter, and the outputs are processed by a conventional adaptive filter. The filter coefficients are updated using the Sign algorithm. Under the assumption that the primary and reference signals are zero mean, wide-sense stationary and Gaussian, theoretical results for the coefficient misalignment vector and its autocorrelation matrix of the filter are driven. The convergence properties of Sign. MADF and M-MADF algorithm for updating of the coefficients of a digital filter of the fractionally spaced equalizer (FSE) are investigated and compared with one another. The convergence properties are characterized by the steady state error and the convergence speed. It is shown that the convergence speed of M-MADF is almost same as Sign algorithm and is faster that MADF in the condition of same steady error. Especially it is very useful for high correlated signals.

  • PDF

WCDMA Interference Cancellation Wireless Repeater Using Variable Stepsize Complex Sign-Sign LMS Algorithm (가변 스텝 Complex Sign-Sign LMS 적응 알고리즘을 사용한 WCDMA 간섭제거 중계기)

  • Hong, Seung-Mo;Kim, Chong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.9
    • /
    • pp.37-43
    • /
    • 2010
  • An Interference Cancellation Wireless Repeater transmitts directly amplified the RF signal input to extend the coverage of the base station. Such a repeater inevitably suffers from the feedback interferences due to the environment and the adaptive Interference Cancelling System(ICS) is necessary. In this paper, the Variable Stepsize Complex Sign -Sign(VSCSS) LMS algorithm for ICS is presented. The algorithm can be implemented without multiplication/division arithmetic operation so that the required logic resources can be dramatically reduced in FPGA implementation. The performance of the proposed algorithm was analyzed in comparison with CSS-LMS algorithm and the learning curves obtained from simulation showed an excellent agreement with the theorical prediction. The simulation result with ICS in fading feedback channel environment showed the performance of the proposed algorithm is competible with NLMS algorithm.

Adaptive noise cancellation algorithm reducing path misadjustment due to speech signal (음성신호로 인한 잡음전달경로의 오조정을 감소시킨 적응잡음제거 알고리듬)

  • 박장식;김형순;김재호;손경식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1172-1179
    • /
    • 1996
  • General adaptive noise canceller(ANC) suffers from the misadjustment of adaptive filter weights, because of the gradient-estimate noise at steady state. In this paper, an adaptive noise cancellation algorithm with speech detector which is distinguishing speech from silence and adaptation-transient region is proposed. The speech detector uses property of adaptive prediction-error filter which can filter the highly correlated speech. To detect speech region, estimation error which is the output of the adaptive filter is applied to the adaptive prediction-error filter. When speech signal apears at the input of the adaptive prediction-error filter. The ratio of input and output energy of adaptive prediction-error filter becomes relatively lower. The ratio becomes large when the white noise appears at the input. So the region of speech is detected by the ratio. Sign algorithm is applied at speech region to prevent the weights from perturbing by output speech of ANC. As results of computer simulation, the proposed algorithm improves segmental SNR and SNR up to about 4 dBand 11 dB, respectively.

  • PDF

Face and Hand Tracking Algorithm for Sign Language Recognition (수화 인식을 위한 얼굴과 손 추적 알고리즘)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1071-1076
    • /
    • 2006
  • In this paper, we develop face and hand tracking for sign language recognition system. The system is divided into two stages; the initial and tracking stages. In initial stage, we use the skin feature to localize face and hands of signer. The ellipse model on CbCr space is constructed and used to detect skin color. After the skin regions have been segmented, face and hand blobs are defined by using size and facial feature with the assumption that the movement of face is less than that of hands in this signing scenario. In tracking stage, the motion estimation is applied only hand blobs, in which first and second derivative are used to compute the position of prediction of hands. We observed that there are errors in the value of tracking position between two consecutive frames in which velocity has changed abruptly. To improve the tracking performance, our proposed algorithm compensates the error of tracking position by using adaptive search area to re-compute the hand blobs. The experimental results indicate that our proposed method is able to decrease the prediction error up to 96.87% with negligible increase in computational complexity of up to 4%.