• Title/Summary/Keyword: short-circuit

Search Result 1,679, Processing Time 0.031 seconds

The Fabrication of Poly-Si Solar Cells for Low Cost Power Utillity (저가 지상전력을 위한 다결정 실리콘 태양전지 제작)

  • Kim, S.S.;Lim, D.G.;Shim, K.S.;Lee, J.H.;Kim, H.W.;Yi, J.
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.3-11
    • /
    • 1997
  • Because grain boundaries in polycrystalline silicon act as potential barriers and recombination centers for the photo-generated charge carriers, these defects degrade conversion effiency of solar cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatment, various grid pattern, selective wet etching for grain boundaries, buried contact metallization along grain boundaries, grid on metallic thin film. Pretreatment above $900^{\circ}C$ in $N_2$ atmosphere, gettering by $POCl_3$ and Al treatment for back surface field contributed to obtain a high quality poly-Si. To prevent carrier losses at the grain boundaries, we carried out surface treatment using Schimmel etchant. This etchant delineated grain boundaries of $10{\mu}m$ depth as well as surface texturing effect. A metal AI diffusion into grain boundaries on rear side reduced back surface recombination effects at grain boundaries. A combination of fine grid with finger spacing of 0.4mm and buried electrode along grain boundaries improved short circuit current density of solar cell. A ultra-thin Chromium layer of 20nm with transmittance of 80% reduced series resistance. This paper focused on the grain boundary effect for terrestrial applications of solar cells with low cost, large area, and high efficiency.

  • PDF

Growth of CaAl2Se4: Co Single Crystal Thin Film for Solar Cell Development and Its Solar Cell Application (태양 전지용 CaAl2Se4: Co 단결정 박막 성장과 태양 전지로의 응용)

  • Bang, Jin-Ju;Hong, Kwang-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.25-36
    • /
    • 2018
  • The stoichiometric mixture of evaporating materials for the $CaAl_2Se_4$: Co single crystal thin film was prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CaAl_2Se_4$, it was found orthorhomic structure whose lattice constant $a_0$, $b_0$ and $c_0$ were 6.4818, $11.1310{\AA}$ and $11.2443{\AA}$, respectively. To obtain the $CaAl_2Se_4$: Co single crystal thin film, $CaAl_2Se_4$: Co mixed crystal was deposited on throughly etched Si (100) by the HWE (Hot Wall Epitaxy) system. The source and substrate temperature were $600^{\circ}C$ and $440^{\circ}C$ respectively. The crystalline structure of $CaAl_2Se_4$: Co single crystal thin film was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of Van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by impurity scattering in the temperature range 30 K to 100 K and by lattice scattering in the temperature range 100 K to 293 K. The temperature dependence of the energy band gap of the $CaAl_2Se_4$: Co obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.8239eV-(4.9823{\times}10^{-3}eV/K)T_2/(T+559K)$. The open-circuit voltage, short current density, fill factor, and conversion efficiency of $p-Si/p-CaAl_2Se_4$: Co heterojunction solar cells under $80mW/cm^2$ illumination were found to be 0.42 V, $25.3mA/cm^2$, 0.75 and 9.96%, respectively.

Photocurrent and Its Stability Enhancement of Dye-sensitized Nanoparticle $TiO_2$ Solar Cells (염료감응 나노입자 $TiO_2$ 태양전지의 광전류와 그 안정성 향상)

  • Chae Won-Weok;Kang Tae-Sik;Kim Kang-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.232-236
    • /
    • 1999
  • A solar cell based on dye-sensitized photoelectric conversion was studied by electrochemical and spec-trofluorometric methods for the purposes of enhancing its efficiency and stability of $TiO_2$ solar cells. Nanocrystalline $TiO_2$ was used to prepare photoelectrodes, and photosensitizing dyes such as malachite green oxalate, basic blue3, rhodamine B, and bromocresol purple were chosen as sensitizers. Electrochemical oxidation potentials and absorption and emission wavelengths of dyes were used to determine energy levels of the dyes. By comparing excited energy levels of the dyes with the conduction band edge potential $(E_{c,s})\;of\;TiO_2$ calculated by using the flat-band potential $(E_{fb})\;of\;TiO_2$, properties of a dye required to fabricate a high efficient photosensitizing solar cell with high short-circuit current $(J_{sc})$ were suggested. Enhanced stability of photocurrent was obtained by coating a $TiO_2|ITO$ electrode with Polypyrrole that Possibly Prevented the recombination between the conduction band electrons and oxidized dyes and suppressed the direct electrode redox reactions of dyes on ITO.

Design of 256Kb EEPROM IP Aimed at Battery Applications (배터리 응용을 위한 1.5V 단일전원 256Kb EEPROM IP 설계)

  • Kim, Young-Hee;Jin, RiJun;Ha, Pan-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.558-569
    • /
    • 2017
  • In this paper, a 256Kb EEPROM IP aimed at battery applications using a single supply of 1.5V which is embedded into an MCU is designed. In the conventional cross-coupled VPP (boosted voltage) charge pump using a body-potential biasing circuit, cross-coupled PMOS devices of 5V in it can be broken by the junction or gate oxide breakdown due to a high voltage of 8.53V applied to them in exiting the program or erase mode. Since each pumping node is precharged to the input voltage of the pumping stage at the same time that the output node is precharged to VDD in the cross-coupled charge pump, a high voltage of above 5.5V is prevented from being applied to them and thus the breakdown does not occur. Also, all erase, even program, odd program, and all program modes are supported to reduce the times of erasing and programming 256 kilo bits of cells. Furthermore, disturbance test time is also reduced since disturbance is applied to all the 256 kilo bits of EEPROM cells at once in the cell disturb test modes to reduce the cell disturbance testing time. Lastly, a CG driver with a short disable time to meet the cycle time of 40ns in the erase-verify-read mode is newly proposed.

High-k ZrO2 Enhanced Localized Surface Plasmon Resonance for Application to Thin Film Silicon Solar Cells

  • Li, Hua-Min;Zang, Gang;Yang, Cheng;Lim, Yeong-Dae;Shen, Tian-Zi;Yoo, Won-Jong;Park, Young-Jun;Lim, Jong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.276-276
    • /
    • 2010
  • Localized surface plasmon resonance (LSPR) has been explored recently as a promising approach to increase energy conversion efficiency in photovoltaic devices, particularly for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. The LSPR is frequently excited via an electromagnetic (EM) radiation in proximate metallic nanostructures and its primary con sequences are selective photon extinction and local EM enhancement which gives rise to improved photogeneration of electron-hole (e-h) pairs, and consequently increases photocurrent. In this work, high-dielectric-constant (k) $ZrO_2$ (refractive index n=2.22, dielectric constant $\varepsilon=4.93$ at the wavelength of 550 nm) is proposed as spacing layer to enhance the LSPR for application to the thin film silicon solar cells. Compared to excitation of the LSPR using $SiO_2$ (n=1.46, $\varepsilon=2.13$ at the wavelength of 546.1 nm) spacing layer with Au nanoparticles of the radius of 45nm, that using $ZrO_2$ dielectric shows the advantages of(i) ~2.5 times greater polarizability, (ii) ~3.5 times larger scattering cross-section and ~1.5 times larger absorption cross-section, (iii) 4.5% higher transmission coefficient of the same thickness and (iv) 7.8% greater transmitted electric filed intensity at the same depth. All those results are calculated by Mie theory and Fresnel equations, and simulated by finite-difference time-domain (FDTD) calculations with proper boundary conditions. Red-shifting of the LSPR wavelength using high-k $ZrO_2$ dielectric is also observed according to location of the peak and this is consistent with the other's report. Finally, our experimental results show that variation of short-circuit current density ($J_{sc}$) of the LSPR enhanced a-Si:H solar cell by using the $ZrO_2$ spacing layer is 45.4% higher than that using the $SiO_2$ spacing layer, supporting our calculation and theory.

  • PDF

Photovoltaic Properties of MEH-PPV/DFPP Blend Devices Based on Novel n-type Polymer DFPP (새로운 n형 고분자인 DFPP 기반의 MEH-PPV/DFPP Blend 소자의 광전특성)

  • Kim, Su-Hyun;Moon, Ji-Sun;Lee, Jae-Woo;Lee, Seok;Kim, Sun-Ho;Byun, Young-Tae;Kim, Dong-Young;Lee, Chang-Jin;Kim, Eu-Gene;Chung, Young-Chul;Rie, Kung-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.461-468
    • /
    • 2006
  • Optical characteristics in polymer films of MEH-PPV/DFPP blends were for the first time investigated. DFPP (N, N'-diperfluorophenyl-3,4,9,10-perylenetetracarboxylic diimide) used here was a novel n-type polymer, which had good stability in air and solubility in common solvents. For a 1:9 DFPP:MEH-PPV blend, highly efficient quenching of photoluminescence (PL) was observed. In addition, the photocurrent responses of these MEH-PPV/DFPP photovoltaic cells were measured. When the light intensity was $50mW/cm^2$, short-circuit photocurrent densities were two times higher than those of single layer MEH-PPV devices.

Effect of Vinylene Carbonate as an Electrolyte Additive on the Electrochemical Properties of Micro-Patterned Lithium Metal Anode (미세 패턴화된 리튬금속 전극의 Vinylene Carbonate 첨가제 도입에 따른 전기화학 특성에 관한 연구)

  • Jin, Dahee;Park, Joonam;Dzakpasu, Cyril Bubu;Yoon, Byeolhee;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.2
    • /
    • pp.69-78
    • /
    • 2019
  • Lithium metal anode with the highest theoretical capacity to replace graphite anodes are being reviewed. However, the dendrite growth during repeated oxidation/reduction reaction on lithium metal surface, which results in poor cycle performance and safety issue has hindered its successful implementation. In our previous work, we solved this problem by using surface modification technique whereby a surface pattern on lithium metal anode is introduced. Although the micro-patterned Lithium metal electrode is beneficial to control Li metal deposition efficiently, it is difficult to control the mossy-like Li granulation at high current density ($>2.0mA\;cm^{-2}$). In this study, we introduce vinylene carbonate (VC) electrolyte additive on micro patterned lithium metal anode to suppress the lithium dendrite growth. Owing to the synergetic effect of micro-patterned lithium metal anode and VC electrolyte additive, lithium dendrite at a high current density is dense. As a result, we confirmed that the cycle performance was further improved about 6 times as compared with the reference electrode.

Effects of Multi-layer and TiCl4 Treatment for TiO2 Electrode in Dye-sensitized Solar Cell (염료감응 태양전지의 TiO2 전극의 다중층 및 TiCl4 처리에 따른 효과)

  • Kim, Gyeong-Ok;Kim, Ki-Won;Cho, Kwon-Koo;Ryu, Kwang-Sun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-195
    • /
    • 2011
  • To investigate the photon-trapping effect and scattering layer effect of $TiO_2$ multi-layer in dye-sensitized solar cell (DSSC) and the degree of recombination of electrons at the electrode treated $TiCl_4$, we formed electrodes of different conditions and obtained the most optimal electrode conditions. To estimate characteristics of the cell, IV curve, UV-Vis spectrophotometer, electrochemical impedance spectroscopy (EIS) and incident photon-to-current conversion efficiency (IPCE) were measured. As a result, we confirmed that the multi-layer's efficiency was higher than that of monolayer in the IV curve and the performance of $TiCl_4$ treated electrode was increased according to decreasing the impedance of EIS. Among several conditions, the efficiency of the cell with scattering layer is higher than that of a layer with the base electrode about 19%. Because the light scattering layer enhances the efficiency of the transmission wavelength and has long electron transfer path. Therefore, the value of the short circuit current increases approximately 10% and IPCE in the maximum peak also increases about 12%.

Korean Red Ginseng aqueous extract improves markers of mucociliary clearance by stimulating chloride secretion

  • Cho, Do-Yeon;Skinner, Daniel;Zhang, Shaoyan;Lazrak, Ahmed;Lim, Dong Jin;Weeks, Christopher G.;Banks, Catherine G.;Han, Chang Kyun;Kim, Si-Kwan;Tearney, Guillermo J.;Matalon, Sadis;Rowe, Steven M.;Woodworth, Bradford A.
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.66-74
    • /
    • 2021
  • Background: Abnormal chloride (Cl-) transport has a detrimental impact on mucociliary clearance in both cystic fibrosis (CF) and non-CF chronic rhinosinusitis. Ginseng is a medicinal plant noted to have anti-inflammatory and antimicrobial properties. The present study aims to assess the capability of red ginseng aqueous extract (RGAE) to promote transepithelial Cl- secretion in nasal epithelium. Methods: Primary murine nasal septal epithelial (MNSE) [wild-type (WT) and transgenic CFTR-/-], fisher-rat-thyroid (FRT) cells expressing human WT CFTR, and TMEM16A-expressing human embryonic kidney cultures were utilized for the present experiments. Ciliary beat frequency (CBF) and airway surface liquid (ASL) depth measurements were performed using micro-optical coherence tomography (μOCT). Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers and whole-cell patch clamp analysis. Results: RGAE (at 30㎍/mL of ginsenosides) significantly increased Cl- transport [measured as change in short-circuit current (ΔISC = ㎂/㎠)] when compared with control in WT and CFTR-/- MNSE (WT vs control = 49.8±2.6 vs 0.1+/-0.2, CFTR-/- = 33.5±1.5 vs 0.2±0.3, p < 0.0001). In FRT cells, the CFTR-mediated ΔISC attributed to RGAE was small (6.8 ± 2.5 vs control, 0.03 ± 0.01, p < 0.05). In patch clamp, TMEM16A-mediated currents were markedly improved with co-administration of RGAE and uridine 5-triphosphate (8406.3 +/- 807.7 pA) over uridine 5-triphosphate (3524.1 +/- 292.4 pA) or RGAE alone (465.2 +/- 90.7 pA) (p < 0.0001). ASL and CBF were significantly greater with RGAE (6.2+/-0.3 ㎛ vs control, 3.9+/-0.09 ㎛; 10.4+/-0.3 Hz vs control, 7.3 ± 0.2 Hz; p < 0.0001) in MNSE. Conclusion: RGAE augments ASL depth and CBF by stimulating Cl- secretion through CaCC, which suggests therapeutic potential in both CF and non-CF chronic rhinosinusitis.

Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte (복합고체 전해질을 적용한 리튬이차전지의 전기화학적 특성)

  • Han, Jong Su;Yu, Hakgyoon;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.100-105
    • /
    • 2021
  • Recently, all-solid-state batteries have attracted much attention to improve safety of rechargeable lithium batteries, but the solid-state batteries of conductive ceramics or solid polymer electrolytes show poor electrochemical properties because of several problems such as high interfacial resistance and undesired reactions. To solve the problems of the reported all-solid-state batteries, a hybrid solid electrolyte is suggested, in this study, NASICON-type nanoparticle Li1.5Al0.5Ti1.5P3O12 (LATP) conductive ceramic, PVdF-HFP, and a carbonate-based liquid electrolyte were composited to prepare a quasi-solid electrolyte. The hybrid solid electrolyte has a high voltage stability of 5.6 V and shows an suppress effect of lithium dendrite growth in the stripping-plating test. The LiNi0.83Co0.11Mn0.06O2 (NCM811)-based battery with the hybrid solid electrolyte exhibits a high discharge capacity of 241.5 mAh/g at a high charge-cut-off voltage of 4.8V and stable electrochemical reaction. The NCM811-based battery also shows 139.4 mAh/g discharge capacity without short circuit or explosion at 90℃. Therefore, the LATP-based hybrid solid electrolyte can be an effective solution to improve the safety and electrochemical properties of rechargeable lithium batteries.