DOI QR코드

DOI QR Code

Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte

복합고체 전해질을 적용한 리튬이차전지의 전기화학적 특성

  • Han, Jong Su (Department of Energy Convergence Engineering, Cheongju University) ;
  • Yu, Hakgyoon (Department of Energy Convergence Engineering, Cheongju University) ;
  • Kim, Jae-Kwang (Department of Energy Convergence Engineering, Cheongju University)
  • 한종수 (청주대학교에너지융합공학과) ;
  • 유학균 (청주대학교에너지융합공학과) ;
  • 김재광 (청주대학교에너지융합공학과)
  • Received : 2021.07.24
  • Accepted : 2021.09.07
  • Published : 2021.11.30

Abstract

Recently, all-solid-state batteries have attracted much attention to improve safety of rechargeable lithium batteries, but the solid-state batteries of conductive ceramics or solid polymer electrolytes show poor electrochemical properties because of several problems such as high interfacial resistance and undesired reactions. To solve the problems of the reported all-solid-state batteries, a hybrid solid electrolyte is suggested, in this study, NASICON-type nanoparticle Li1.5Al0.5Ti1.5P3O12 (LATP) conductive ceramic, PVdF-HFP, and a carbonate-based liquid electrolyte were composited to prepare a quasi-solid electrolyte. The hybrid solid electrolyte has a high voltage stability of 5.6 V and shows an suppress effect of lithium dendrite growth in the stripping-plating test. The LiNi0.83Co0.11Mn0.06O2 (NCM811)-based battery with the hybrid solid electrolyte exhibits a high discharge capacity of 241.5 mAh/g at a high charge-cut-off voltage of 4.8V and stable electrochemical reaction. The NCM811-based battery also shows 139.4 mAh/g discharge capacity without short circuit or explosion at 90℃. Therefore, the LATP-based hybrid solid electrolyte can be an effective solution to improve the safety and electrochemical properties of rechargeable lithium batteries.

최근 리튬이차전지의 안전성을 향상시킨 전고체 전지가 많은 관심의 대상이 되고 있으나 전도성 세라믹 또는 고체 고분자 전해질을 적용한 고체전지는 높은 계면 저항, 부반응 등과 같은 문제점을 지니고 있어 전기화학적 특성이 낮다. 기존 전고체 전지의 이러한 문제점을 해결하기 위하여 복합고체 전해질이 제안되었으며 본 연구에서는 나시콘 구조의 나노 입자 Li1.5Al0.5Ti1.5P3O12 (LATP) 전도성 세라믹, PVdF-HFP, 카보네이티 기반 액체전해질을 복합화 하여 유사고체 전해질을 제작하였다. 이 복합고체 전해질은 5.6 V의 높은 전압 안전성을 가지며 리튬이온의 탈리-착리 테스트에서 리튬 금속전극의 덴드라이트 성장 억제 효과가 있음을 보여준다. 또한 복합고체 전해질을 적용한 LiNi0.83Co0.11Mn0.06O2 (NCM811)기반 전지에서 4.8 V의 높은 충전 종지 전압에도 241.5 mAh/g의 높은 방전 용량을 나타내며 안정적인 전기화학 반응이 일어난다. NCM811 기반 전지의 90도 충전-방전 중에도 전지의 단락이나 폭발 없이 139.4 mAh/g 방전 용량을 보인다. 따라서 LATP기반 복합고체 전해질은 리튬이차전지의 안전성과 전기화학적 특성을 향상 시킬 수 있는 효과적인 방법임을 알 수 있다.

Keywords

Acknowledgement

이 논문은 2021학년도에 청주대학교가 지원한 일반연구과제에 의해 연구되었음 (2021.03.01~2022.02.28).

References

  1. O. H. Kwon, J. B. Kim and J.-K. Kim, 'Improving the Electrochemical Properties of Lithium Terephthalate-based Lithium-Organic Battery with A Graphite Coated Current Collector' J. Korean Electrochem. Soc., 22, 121-127 (2019).
  2. J. Kim, J. Oh, J. Y. Kim, Y.-G. Lee, and K. M. Kim, 'Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries' J. Korean Electrochem. Soc., 22, 87-103 (2019). https://doi.org/10.5229/JKES.2019.22.3.87
  3. F. Wu, J. Maier and Y. Yu, 'Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-ion Batteries' Chem. Soc. Rev., 49, 1569-1614 (2020). https://doi.org/10.1039/c7cs00863e
  4. H. Byeon, B. Gu, H.-J. Kim, J. H. Lee, I. Seo, J. Kim, J. W. Yang, and J.-K. Kim, 'Redox Chemistry of Nitrogen-doped CNT-Encapsulated Nitroxide Radical Polymers for High Energy Density and Rate-Capability Organic Batteries' Chemical Engineering J., 413, 127402 (2021). https://doi.org/10.1016/j.cej.2020.127402
  5. Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo, H. Dou, Z. Li, K. Amine, A. Yu and Z. Chen, 'A Review of Composite Solid-State Electrolytes for Lithium Batteries: Fundamentals, Key Materials and Advanced Structures' Chem. Soc. Rev., 49, 8790-8839 (2020). https://doi.org/10.1039/d0cs00305k
  6. Z. Chen, D. Steinle, H.-D. Nguyen, J.-K. Kim, A. Mayer, J. Shi, E. Paillard, C. Iojoiu, S. Passerini, and D. Bresser, 'High-Energy Lithium Batteries based on Single-Ion Conducting Polymer Electrolytes and Li[Ni0.8Co0.1Mn0.1]O2 Cathodes' Nano Energy, 77, 105129 (2020). https://doi.org/10.1016/j.nanoen.2020.105129
  7. J.-K. Kim, Y. J. Lim, H. Kim, G.-B. Cho, and Y. Kim,'A Hybrid Solid Electrolyte for Flexible Solid-State Sodium Batteries' Energy Environ. Sci., 8, 3589-3596 (2015). https://doi.org/10.1039/C5EE01941A
  8. Y.-K. Sun, 'Promising All-Solid-State Batteries for Future Electric Vehicles' ACS Energy Lett., 5, 3221-3223 (2020). https://doi.org/10.1021/acsenergylett.0c01977
  9. M.-J. Kim, J.-W. Park, B. G. Kim, Y.-J. Lee, Y.-C. Ha, S.-M. Lee and K.-J. Baeg,'Facile Fabrication of Solution-Processed Solid-Electrolytes for High-Energy-Density All-Solid-State-Batteries by Enhanced Interfacial Contact' Scientific Reports, 10, 11923 (2020). https://doi.org/10.1038/s41598-020-68885-4
  10. J. S. Han, G. C. Hwang, H. Yu, D.-H. Lim, J. S. Cho, M. Kuenzel, Jae-Kwang Kim, and J.-H. Ahn, 'Preparation of Fully Flexible Lithium Metal Batteries with Free-Standing β-Na0.33V2O5 Cathodes and LAGP Hybrid Solid Electrolytes, J. Industrial and Engineering Chem., 94, 368-375 (2021). https://doi.org/10.1016/j.jiec.2020.11.011
  11. Z. Chen, G.-T. Kim, J.-K. Kim, M. Zarrabeitia, M. Kuenzel, H.-P. Liang, D. Geiger, U. Kaiser, and S. Passerini, 'Highly Stable Quasi-Solid-State Lithium Metal Batteries: Reinforced Li1.3Al0.3Ti1.7(PO4)3/Li Interface by a Protection Interlayer' Adv. Energy Mater., 2101339 (2021).
  12. H. Yu, J. S. Han, G. C. Hwang, J. S. Cho, D.-W. Kang, and J.-K. Kim, 'Optimization of High Potential Cathode Materials and Lithium Conducting Hybrid Solid Electrolyte for High-Voltage All-Solid-State Batteries' Electrochim. Acta, 365, 137349 (2021). https://doi.org/10.1016/j.electacta.2020.137349
  13. S. Wang, Y. Ding, G. Zhou, G. Yu, and A. Manthiram, 'Durability of the Li1+xTi2-xAlx(PO4)3 Solid Electrolyte in Lithium-Sulfur Batteries' ACS Energy Lett., 1, 1080-1085 (2016). https://doi.org/10.1021/acsenergylett.6b00481
  14. X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, 'Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review' Chem. Rev., 117, 10403-10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
  15. F. Wu, S. Fang, M. Kuenzel, A. Mullaliu, J.-K. Kim, X. Gao, T. Diemant, G.-T. Kim, and S. Passerini, 'Dual-anion Ionic Liquid Electrolyte Enables Stable Ni-rich Cathodes in Lithium-Metal Batteries' Joule, 5, 1-18, (2021). https://doi.org/10.1016/j.joule.2020.12.026