DOI QR코드

DOI QR Code

Stretchable Current Collector Composing of DMSO-dopped Nano PEDOT:PSS Fibers for Stretchable Li-ion Batteries

신축성 리튬이온전지를 위한 DMSO 도핑 PEDOT:PSS 나노 섬유 집전체

  • Kwon, O. Hyeon (Department of Energy Convergence Engineering, Cheongju University) ;
  • Lee, Ji Hye (Department of Energy Convergence Engineering, Cheongju University) ;
  • Kim, Jae-Kwang (Department of Energy Convergence Engineering, Cheongju University)
  • 권오현 (청주대학교에너지융합공학과) ;
  • 이지혜 (청주대학교에너지융합공학과) ;
  • 김재광 (청주대학교에너지융합공학과)
  • Received : 2021.07.24
  • Accepted : 2021.09.03
  • Published : 2021.11.30

Abstract

In order to decrease the weight of stretchable energy storage devices, interest in developing lightweight materials to replace metal current collectors is increasing. In this study, nanofibers prepared by electrospinning a conductive polymer, PEDOT:PSS, were used as current collectors for lithium ion batteries. The nanofiber showed improved electrical conductivity by using DMSO, a dopant, and indicated a stretch rate of 30% or more from the elasticity evaluation result. In addition, the use of the nanofiber current collector facilitates penetration of the liquid electrolyte and exhibits the effect of increasing the electronic conductivity through the nanofiber network. The lithium-ion battery using the DMSO-doped PEDOT:PSS@PAM nanofiber current collector indicated a high discharge capacity of 135mAh g-1, and indicated a high capacity retention rate of 73.5% after 1000 cycles. Thus, the excellent electrochemical stability and mechanical properties of conductive nanofibers showed that they can be used as lightweight current collectors for stretchable energy storage devices.

스트레처블 에너지 저장 장치 경량화를 위해 금속 집전체를 대체할 경량 물질 개발에 대한 관심이 높아지고 있다. 본 연구에서는 전도성 고분자인 PEDOT:PSS를 전기방사법으로 제조한 나노 섬유를 리튬이온전지용 집전체로 사용하였다. 나노 섬유는 도펀트인 DMSO를 사용해 향상된 전기 전도성을 나타냈으며, 신축성 평가결과로 부터 30% 이상의 신축률을 보여주었다. 또한, 나노 섬유 집전체를 사용함으로써 액체 전해질의 침투가 용이하며, 나노 섬유 네트워크를 통해 전자전도성을 높이는 효과를 나타났었다. DMSO 도핑 PEDOT:PSS@PAM 나노 섬유 필름 집전체를 사용한 리튬이온전지는 135mAh g-1의 높은 방전용량을 보여주었으며, 1000 사이클 이후 73.5%의 높은 용량 유지율을 나타내었다. 따라서, 전도성 나노 섬유의 우수한 전기화학적 안정성과 기계적 특성은 신축성 에너지 저장 장치의 경량 집전체로서의 활용이 가능함을 보여주었다.

Keywords

Acknowledgement

이 논문은 2021학년도에 청주대학교가 지원한 일반연구과제에 의해 연구되었음(2021.03.01~2022.02.28).

References

  1. Y.-L. Zheng, X.-R. Ding, C. C. Y. Poon, B. P. L. Lo, H. Zhang, X.-L. Zhou, G.-Z. Yang, N. Zhao and Y.-T. Zhang, 'Unobtrusive sensing and wearable devices for health informatics'. IEEE. Trans. Biomed. Eng., 61, 1538 (2014). https://doi.org/10.1109/TBME.2014.2309951
  2. S. Ding, J. Jiu, Y. Gao, Y. Tian, T. Araki, T. Sugahara, S. Nagao, M. Nogi, H. Koga and K. Suganuma, 'One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices'. ACS Appl. Mater. Interfaces., 8, 6190 (2016). https://doi.org/10.1021/acsami.5b10802
  3. H.-H. Chou, A. Nguyen, A. Chortos, J. W. To, C. Lu, J. Mei, T. Kurosawa, W.-G. Bae, J. B.-H. Tok and Z. Bao, 'A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing'. Nat. Commun., 6, 1 (2015).
  4. S. J. Benight, C. Wang, J. B. Tok and Z. Bao, 'Stretchable and self-healing polymers and devices for electronic skin'. Prog. Polym. Sci., 38, 1961 (2013). https://doi.org/10.1016/j.progpolymsci.2013.08.001
  5. D.-H. Kim, N. Lu, R. Ghaffari and J. A. Rogers, 'Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics'. NPG Asia Mater., 4, e15 (2012). https://doi.org/10.1038/am.2012.27
  6. S. Choi, H. Lee, R. Ghaffari, T. Hyeon and D. H. Kim, 'Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials'. Adv. Mater., 28, 4203 (2016). https://doi.org/10.1002/adma.201504150
  7. G. Zhou, F. Li and H.-M. Cheng, 'Progress in flexible lithium batteries and future prospects'. Energy Environ. Sci., 7, 1307 (2014). https://doi.org/10.1039/C3EE43182G
  8. K. Wang, S. Luo, Y. Wu, X. He, F. Zhao, J. Wang, K. Jiang and S. Fan, 'Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries'. Adv. Funct. Mater., 23, 846 (2013). https://doi.org/10.1002/adfm.201202412
  9. Y.-I. Jang, N. J. Dudney, T. N. Tiegs and J. W. Klett, 'Evaluation of the electrochemical stability of graphite foams as current collectors for lead acid batteries'. J. Power Sources., 161, 1392 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.124
  10. X. Du, Z. Zhang, W. Liu and Y. Deng, 'Nanocellulose-based conductive materials and their emerging applications in energy devices-A review'. Nano Energy., 35, 299 (2017). https://doi.org/10.1016/j.nanoen.2017.04.001
  11. Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang and J. A. Rogers, 'Controlled buckling of semiconductor nanoribbons for stretchable electronics'. Nat. Nanotechnol., 1, 201 (2006). https://doi.org/10.1038/nnano.2006.131
  12. W. Liu, J. Chen, Z. Chen, K. Liu, G. Zhou, Y. Sun, M. S. Song, Z. Bao and Y. Cui, 'Stretchable Lithium-Ion Batteries Enabled by Device-Scaled Wavy Structure and Elastic-Sticky Separator'. Adv. Energy Mater., 7, 1701076. (2017). https://doi.org/10.1002/aenm.201701076
  13. S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J. A. Fan, Y. Su, J. Su and H. Zhang, 'Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems'. Nat. Commun., 4, 1 (2013).
  14. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, 'Large-scale pattern growth of graphene films for stretchable transparent electrodes'. Nature., 457, 706 (2009). https://doi.org/10.1038/nature07719
  15. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba and K. Hata, 'A stretchable carbon nanotube strain sensor for human-motion detection'. Nat. Nanotechnol., 6, 296 (2011). https://doi.org/10.1038/nnano.2011.36
  16. T. S. Hansen, K. West, O. Hassager and N. B. Larsen, 'Highly stretchable and conductive polymer material made from poly (3, 4-ethylenedioxythiophene) and polyurethane elastomers'. Adv. Funct. Mater., 17, 3069 (2007). https://doi.org/10.1002/adfm.200601243
  17. S. Kirchmeyer and K. Reuter, 'Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene)'. J. Mater. Chem., 15, 2077 (2005). https://doi.org/10.1039/b417803n
  18. Z. Xu, L. M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu and Y. Yang, 'Vertical phase separation in Poly (3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells'. Adv. Funct. Mater., 19, 1227 (2009). https://doi.org/10.1002/adfm.200801286
  19. D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander and Z. Bao, 'Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates'. Chem. Mater., 24, 373 (2012). https://doi.org/10.1021/cm203216m
  20. J. Ouyang, Displays, '"Secondary doping" methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices'. Displays., 34, 423 (2013). https://doi.org/10.1016/j.displa.2013.08.007
  21. H. Shi, C. Liu, Q. Jiang and J. Xu, 'Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review'. Adv. Electron. Mater., 1, 1500017 (2015). https://doi.org/10.1002/aelm.201500017
  22. J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold and D. R. Zahn, 'Enhancement of the thermoelectric properties of PEDOT: PSS thin films by post-treatment'. J. Mater. Chem. A., 1, 7576 (2013). https://doi.org/10.1039/c3ta11209h
  23. A. M. Nardes, M. Kemerink, M. De Kok, E. Vinken, K. Maturova and R. Janssen, 'Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol'. Org. Electron., 9, 727 (2008). https://doi.org/10.1016/j.orgel.2008.05.006
  24. A. M. Nardes, M. Kemerink, R. A. Janssen, J. A. Bastiaansen, N. M. Kiggen, B. M. Langeveld, A. J. Van Breemen and M. M. De Kok, 'Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films'. Adv. Mater., 19, 1196 (2007). https://doi.org/10.1002/adma.200602575
  25. M. Vosgueritchian, D. J. Lipomi and Z. Bao, 'Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes'. Adv. Funct. Mater., 22, 421 (2012). https://doi.org/10.1002/adfm.201101775