DOI QR코드

DOI QR Code

Electrochemical Characteristics of Electrode by Various Preparation Methods for Alkaline Membrane Fuel Cell

알칼리막 연료전지용 전극의 제조방법에 따른 전기화학적 특성 분석

  • Yuk, Eunsung (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Lee, Hyejin (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Jung, Namgee (Graduate School of Energy Science and Technology (GEST), Chungnam National Unuversity) ;
  • Shin, Dongwon (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Bae, Byungchan (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
  • 육은성 (한국에너지기술연구원연료전지연구실) ;
  • 이혜진 (한국에너지기술연구원연료전지연구실) ;
  • 정남기 (충남대학교에너지과학기술대학원) ;
  • 신동원 (한국에너지기술연구원연료전지연구실) ;
  • 배병찬 (한국에너지기술연구원연료전지연구실)
  • Received : 2021.08.26
  • Accepted : 2021.09.23
  • Published : 2021.11.30

Abstract

Catalyst poisoning by ionomers in membrane electrode assemblies of alkaline membrane fuel cells has been reported recently. We tried to improve the membrane electrode assembly's performance by controlling the solvent's ratio during electrode manufacturing. 4 Different mixing ratios of N-Methyl-2-pyrrolidone (NMP) and ethylene glycol (EG) gave four different cathode electrodes with platinum and Fuma-Tech ionomers. The electrode with higher EG improved polarization performance by about 36% compared to the NMP-based commercial ionomer. The dependence of the ionomer's dispersibility on the solvent seems responsible for the difference, which means that the non-uniform distribution of ionomers improves the performance of the electrode. High-frequency resistance, internal resistance corrected polarization curve, Tafel slope, mass activity, and impedance spectroscopy characterized the electrode. We can find that the existence of poor solvent improves cathode electrode performance. It seems to be the result of reduced poisoning of the catalyst according to the particle size distribution of the ionomer.

최근에 알칼리막연료전지의 막전극접합체에서 이오노머에 의한 촉매 피독에 대한 연구 결과들이 보고되고 있다. 본 연구에서는 이를 해결하기 위해서 전극 제조 시에 사용되는 유기용매의 성분을 조절하여 막전극접합체의 성능을 향상시키고자 하였다. Fuma-Tech사의 상용 이오노머를 사용하여 N-Methyl-2-pyrrolidone (NMP)와 Ethylene glycol (EG)를 이용한 4가지의 혼합용매를 제조하였다. 혼합용액을 이용하여 제조된 캐소드 전극은 NMP기반의 상용 이오노머에 비해서 약 36%의 향상된 분극성능을 나타내었다. 이것은 용매의 종류에 따른 이오노머의 분산성 차이에 따른 결과로 추측되며 비균일성 분포의 이오노머가 전극의 성능을 향상시키는 것으로 관찰되었다. 이에 관한 원인분석을 위해서 막전극 접합체의 고주파 저항, 내부저항 보정 분극곡선, Tafel 기울기, Mass activity 및 임피던스 분광법을 사용하여 특성 분석을 실시하였다. 이오노머의 비용매의 비율 증가에 따라서 캐소드 전극 성능이 개선되는 것을 확인하였고, 이것은 이오노머의 입도 분포에 따라서 촉매의 피독이 감소되는 결과로 판단된다.

Keywords

Acknowledgement

본 연구(논문)은 2021년 한국에너지기술연구원 주요과제(C1-2489)의 지원을 받아 수행되었음.

References

  1. Q. He, E. Cairns, Review-Recent Progress in Electrocatalysts for Oxygen Reduction Suitable for Alkaline Anion Exchange Membrane Fuel Cells. Journal of The Electrochemical Society 162, F1504-F1539 (2015). https://doi.org/10.1149/2.0551514jes
  2. T. J. Omasta et al., Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. Journal of Power Sources 375, 205-213 (2018). https://doi.org/10.1016/j.jpowsour.2017.05.006
  3. T. J. Omasta, X. Peng, C. A. Lewis, J. R. Varcoe, W. E. Mustain, Improving Performance in Alkaline Membrane Fuel Cells through Enhanced Water Management. ECS Transactions 75, 949-957 (2016). https://doi.org/10.1149/07514.0949ecst
  4. T. J. Omasta et al., Beyond catalysis and membranes: Visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs. Energy and Environmental Science 11, 551-558 (2018). https://doi.org/10.1039/c8ee00122g
  5. H. Yanagi, K. Fukuta, Anion Exchange Membrane and Ionomer for Alkaline Membrane Fuel Cells (AMFCs). ECS Transactions 16, 257-262 (2019).
  6. Y. Zheng et al., Quantifying and elucidating the effect of CO2 on the thermodynamics, kinetics and charge transport of AEMFCs. Energy & Environmental Science 12, 2806-2819 (2019). https://doi.org/10.1039/C9EE01334B
  7. 배병찬, 김은영, 이소정, 이혜진, 알칼리연료전지용 음이온교환전해질막의 연구 동향 및 전망. 신재생에너지 11, 52-61 (2015).
  8. I. Matanovic et al., Adsorption of Polyaromatic Backbone Impacts the Performance of Anion Exchange Membrane Fuel Cells. Chemistry of Materials 31, 4195-4204 (2019). https://doi.org/10.1021/acs.chemmater.9b01092
  9. I. Matanovic, H. T. Chung, Y. S. Kim, Benzene Adsorption: A Significant Inhibitor for the Hydrogen Oxidation Reaction in Alkaline Conditions. The Journal of Physical Chemistry Letters 8, 4918-4924 (2017). https://doi.org/10.1021/acs.jpclett.7b02228
  10. H. T. Chung, U. Martinez, I. Matanovic, Y. S. Kim, Cation-Hydroxide-Water Coadsorption Inhibits the Alkaline Hydrogen Oxidation Reaction. The Journal of Physical Chemistry Letters 7, 4464-4469 (2016). https://doi.org/10.1021/acs.jpclett.6b02025
  11. E. S. Davydova, S. Mukerjee, F. Jaouen, D. R. Dekel, Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Electrolytes. ACS Catalysis 8, 6665-6690 (2018). https://doi.org/10.1021/acscatal.8b00689
  12. D. Li, H. T. Chung, S. Maurya, I. Matanovic, Y. S. Kim, Impact of ionomer adsorption on alkaline hydrogen oxidation activity and fuel cell performance. Current Opinion in Electrochemistry 12, 189-195 (2018). https://doi.org/10.1016/j.coelec.2018.11.012
  13. D. Li et al., Phenyl Oxidation Impacts the Durability of Alkaline Membrane Water Electrolyzer. ACS Applied Materials & Interfaces 11, 9696-9701 (2019). https://doi.org/10.1021/acsami.9b00711
  14. D. Strmcnik et al., The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nature Chemistry 1, 466-472 (2009). https://doi.org/10.1038/nchem.330
  15. W. Heiland, E. Gileadi, J. O. M. Bockris, Kinetic and Thermodynamic Aspects of the Electrosorption of Benzene on Platinum Electrodes. The Journal of Physical Chemistry 70, 1207-1216 (1966) https://doi.org/10.1021/j100876a040
  16. M. P. Soriaga, A. T. Hubbard, Determination of the orientation of adsorbed molecules at solid-liquid interfaces by thin-layer electrochemistry: aromatic compounds at platinum electrodes. Journal of the American Chemical Society 104, 2735-2742 (1982). https://doi.org/10.1021/ja00374a008
  17. T. Reshetenko, J. St-Pierre, Study of the aromatic hydrocarbons poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system. Journal of Power Sources 333, (2016).
  18. Z. Xie et al., Nafion Ionomer Aggregation and its Influence on Proton Conduction and Mass Transport in Fuel Cell Catalyst Layers. ECS Transactions 16, 1811-1816 (2008). https://doi.org/10.1149/1.2982022
  19. J. H. Lee et al., Dispersion-Solvent Control of Ionomer Aggregation in a Polymer Electrolyte Membrane Fuel Cell. Scientific Reports 8, 10739 (2018). https://doi.org/10.1038/s41598-018-28779-y
  20. B. Britton, S. Holdcroft, The Control and Effect of Pore Size Distribution in AEMFC Catalyst Layers. Journal of The Electrochemical Society 163, F353-F358 (2016). https://doi.org/10.1149/2.0421605jes
  21. X. Shi et al., Maximization of quadruple phase boundary for alkaline membrane fuel cell using non-stoichiometric α-MnO2 as cathode catalyst. International Journal of Hydrogen Energy 44, 1166-1173 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.042
  22. D. Sebastian et al., Optimization of the Catalytic Layer for Alkaline Fuel Cells Based on Fumatech Membranes and Ionomer. Catalysts 10, 1353 (2020). https://doi.org/10.3390/catal10111353
  23. H. J. Park et al., Effect of N-cyclic cationic groups in poly(phenylene oxide)-based catalyst ionomer membranes for anion exchange membrane fuel cells. Journal of Membrane Science 608, 118183 (2020). https://doi.org/10.1016/j.memsci.2020.118183
  24. M. S. Cha et al., Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices. Energy & Environmental Science 13, 3633-3645 (2020). https://doi.org/10.1039/D0EE01842B
  25. J. Zhang et al., Self-adjusting anode catalyst layer for smart water management in anion exchange membrane fuel cells. Cell Reports Physical Science 2, 100377 (2021). https://doi.org/10.1016/j.xcrp.2021.100377
  26. T. Yoda et al., Gas diffusion electrodes containing sulfonated poly (arylene ether) ionomer for PEFCs. Electrochimica Acta 54, 4328-4333 (2009). https://doi.org/10.1016/j.electacta.2009.02.099
  27. B. Bae, K. Miyatake, M. Watanabe, Sulfonated Poly (arylene ether sulfone ketone) Multiblock Copolymers with Highly Sulfonated Block. Synthesis and Properties. Macromolecules 43, 2684-2691 (2010). https://doi.org/10.1021/ma100291z
  28. T. Reshetenko, M. Odgaard, D. Schlueter, A. Serov, Analysis of alkaline exchange membrane fuel cells performance at different operating conditions using DC and ACmethods. Journal of Power Sources 375, 185-190 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.030