• Title/Summary/Keyword: ship collisions

Search Result 146, Processing Time 0.026 seconds

A Study on the Development of an Early Detection System for Altering Course of a Target Ship (선회조기감지시스템 개발에 관한 연구)

  • Jung, Chang-Hyun;Park, Young-Soo;Yoon, Dae-Gwun;Choi, Myung-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.625-630
    • /
    • 2016
  • This paper contributes to the development of an early detection system to detect the alteration of a target ship during early stages using the steering wheel signal via AIS communication. The feasibility of this system is also verified with a real ship trial. It was confirmed that the rudder angle on ECDIS was ordinarily marked green or red by the used rudder angle after the steering wheel operation. We were able to detect intentions for a change in course by a target ship quickly and efficiently avoid collisions. This system will contribute to more active VTS services and the analysis of marine accidents using the General Information Center On Maritime Safety & Security (GICOMS).

A Study on Fire and Evacuation of TrainingShip HANBADA using FDS (FDS를 이용한 실습선 한바다호 화재 및 피난 연구)

  • KIM, Won-Ouk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.380-385
    • /
    • 2017
  • Maritime accidents caused by a ship include collisions, sinking, stranding and fire etc. This study is intending to consider fire accidents among such diverse marine accidents. It is much likely that various sorts of fires break out because crews are living in a narrow space for long periods of time consequent on the ship's characteristic of sailing on the sea. This study carried out a simulation through the special program for fire analysis - FDS (Fire Dynamics Simulator) in order to find the effective evacuation time, i.e. life survival time. Particularly, this study did comparative analysis of the influence on the survival of cadets based on the collected simulation data by fire size and sort. As a result of the analysis, It was analyzed the Evacuation Allowable Limit Temperature $60^{\circ}C$ and resulted that there is no influence in evacuation by temperature. In case of visibility analysis, it reached to 5m which is the Evacuation Allowable Limit at 117 seconds under the condition of wood fire in 1MW. When there is Kerosene in 1MW, it took 92.4 seconds to reach by 5m which is the Evacuation Allowable Limit. Theoretical evacuation time for the non-tilted ship was 118.8 seconds in 1MW sized fire so it is shown that the most passengers are met the evacuation safety in case of wood fire. However, the majority of passengers could not be ensured the evacuation safety in Kerosene case.

Study on the Estimation of Collision Risk of Ship in Ship Handling Simulator using Fuzzy Algorithm and Environmental Stress Model (시뮬레이터 기반 퍼지알고리즘과 환경스트레스모델을 이용한 선박 충돌위험도 추정에 관한 연구)

  • Son, Nom-Sun;Kim, Sun-Young;Gong, In-Young
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Recently, many maritime accidents have been increased and the collisions due to human error are given a great deal of proportions out of them We develop the Real-time Collision Risk Monitoring System (CRMS) for the navigational officers to cope with the emergency situation promptly and thus to reduce the probability of casualty. In this study, the risk of collision and grounding is evaluated by two kinds of method. The first method is based on Fuzzy algorithm, which evaluates the risk of collision between traffic ships. The second method is based on Environmental Stress (ES) Model, where the total risk of collision and grounding is evaluated by the environmental stress felt by human. The developed real-time CRMS has been installed to the ship handling simulator system and its capabilities have been tested through simulator experiments.

A Novel Collision Avoidance System to Prevent Navigator's Human Error - Development Concepts - (해기사 인적오류 예방이 가능한 새포운 선박충돌회피 시스템 개발 개념)

  • Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.264-264
    • /
    • 2019
  • The purpose of this paper is to establish development concepts for a novel collision avoidance system with preventing function of navigator's human error (Hu-CAS) in ship control behaviors. Hu-CAS consists of four modules: 1) collision risk assessment module to estimate collision priority between the ship and objects, 2) decision-making module to decide collision risk levels, 3) parameter estimation module needed in the ship control to avoid collisions and 4) control system to control the rudder angle and speed. Hu-CAS, proposed in this paper, can provide a novel system substitution current Autopilot and/or a CAS be teen manned vessel and Autonomous ship in a future.

  • PDF

A Study on the Application of Smart Safety Helmets and Environmental Sensors in Ships (선박 내 스마트 안전모 및 환경 센서 적용에 관한 연구)

  • Do-Hyeong Kim;Yeon-Chul Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.82-89
    • /
    • 2023
  • Due to the characteristics of ship structure, the compartment structure is complicated and narrow, so safety accidents frequently occur during the work process. The main causes of accidents include structural collisions, falling objects, toxic substance leaks, fires, explosions, asphyxiation, and more. Understanding the on-site conditions of workers during accidents is crucial for mitigating damages. In order to ensure safety, the on-site situation is monitored using CCTV in the ship, but it is difficult to prevent accidents with the existing method. To address this issue, a smart safety helmet equipped with location identification and voice/video communication capabilities is being developed as a safety technology. Additionally, the smart safety helmet incorporates environmental sensors for temperature, humidity, vibration, noise, tilt (gyro sensor), and gas detection within the work area. These sensors can notify workers wearing the smart safety helmet of hazardous situations. By utilizing the smart safety helmet and environmental sensors, the safety of workers aboard ships can be enhanced.

Point Cloud-Based Spatial Environment Development for Near Real-Time Erection Simulation in Shipyards

  • Yeon-Jun Kim;SeungYeol Wang;Jaewon Jang;Bon-Yeong Park;Dong-Kun Lee;Daekyun Oh
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.247-255
    • /
    • 2023
  • Interference and collisions often occur in the loading process at shipyards. Existing simulation methods focus primarily on resource processes and schedules, and there is a lack of real-time reflection in the complex and highly variable loading process. This study aims to develop a spatial environment incorporating real-time product data, such as hulls, and confirms its effectiveness by simulating various construction scenarios. As a method, a near real-time spatial environment based on broadband laser scanning was established, with the situation of loading heavy cargo assumed when converting an existing ship into an LNG dual-fuel propulsion ship. A case study simulation of near-real-time cargo loading processes was then conducted using Unity 3D to confirm the interference and collision risks within the spatial environment. The results indicated that interference occurred in structures previously not identified in the design data, and a collision occurred during the loading object erection phase. The simulation confirmed that the identification of interference and collision risks during the erection phase highlights the need for a relocation or removal process of potential hazards before erection takes place. An improved erection simulation that integrates near real-time data could effectively prevent interference and collision risks.

Assessment of the Structural Collapse Behavior of Between Offshore Supply Vessel and Leg in the Jack-up Drilling Rig (잭업드릴링 리그의 레그와 작업 지원선 충돌에 의한 구조붕괴 거동 평가)

  • Park, Joo-Shin;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.601-609
    • /
    • 2022
  • Jack-up drilling rigs are mobile offshore platforms widely used in the offshore oil and gas exploration industry. These are independent, three-legged, self-elevating units with a cantilevered drilling facility for drilling and production. A typical jack-up rig includes a triangular hull, a tower derrick, a cantilever, a jackcase, living quarters and legs which comprise three-chord, open-truss, X-braced structure with a spudcan. Generally, jack-up rigs can only operate in water depths ranging from 130m to 170m. Recently, there has been an increasing demand for jack-up rigs for operating at deeper water levels and harsher environmental conditions such as waves, currents and wind loads. All static and dynamic loads are supported through legs in the jack-up mode. The most important issue by society is to secure the safety of the leg structure against collision that causes large instantaneous impact energy. In this study, nonlinear FE -analysis and verification of the requirement against collision for 35MJ recommended by DNV was performed using LS-Dyna software. The colliding ship used a 7,500ton of shore supply vessel, and five scenarios of collisions were selected. From the results, all conditions do not satisfy the class requirement of 35MJ. The loading conditions associated with chord collision are reasonable collision energy of 15M and brace collisions are 6MJ. Therefore, it can be confirmed that the identical collision criteria by DNV need to be modified based on collision scenarios and colliding members.

Collision Strength Analysis of Double Hull Tanker (이중선체(二重船體) 유조선(油槽船)의 충돌강도해석(衝突强度解析))

  • J.K. Paik;P.T. Pedersen
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.103-117
    • /
    • 1995
  • A design-oriented method for analysis of the structural damage due to ship collisions is developed by using the idealized structural unit method(ISUM). The method takes into account yielding, crushing, rupture, the coupling effects between local and global failure of the structure, the influence of strain-rate sensitivity and the gap/contact conditions. The method is verified by a comparison of experimetal and numerical results obtained from test models of double-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example, the method has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response. namely the collision speed and the scantlings/arrangements of strength members, are discussed.

  • PDF

A Study on Factors Influencing Mariners' Decision-Making In the Situation of Collision Avoidance (피항 과정에서 항해사의 의사결정에 영향을 미치는 요인에 관한 연구)

  • Park, Jung-Sun;Yea, Beong-Deok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.119-120
    • /
    • 2009
  • It has been reported that most accidents are caused by human factors. and especially collisions occurred by human are more than 80 percent. Thus we have to understand how mariners generally deal the own operating ship to avoid the target ship. what information they require. and so on. The aim of this paper is to clarify the important factors influencing mariners' decision-making in the situation of collision avoidance. As a result, main factors in each process for collision avoidance were analyzed.

  • PDF

Block-based Self-organizing TDMA for Reliable VDES in SANETs

  • Sol-Bee Lee;Jung-Hyok Kwon;Bu-Young Kim;Woo-Seong Shim;Dongwan Kim;Eui-Jik Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.511-527
    • /
    • 2024
  • This paper proposes a block-based self-organizing time-division multiple access (BSO-TDMA) protocol for very high frequency (VHF) data exchange system (VDES) in shipborne ad-hoc networks (SANETs). The BSO-TDMA reduces the collisions caused by the simultaneous transmission of automatic identification system (AIS) messages by uniformly allocating channel resources using a block-wise frame. For this purpose, the BSO-TDMA includes two functional operations: (1) frame configuration and (2) slot allocation. The first operation consists of block division and block selection. A frame is divided into multiple blocks, each consisting of fixed-size subblocks, by using the reporting interval (RI) of the ship. Then, the ship selects one of the subblocks within a block by considering the number of occupied slots for each subblock. The second operation allocates the slots within the selected subblock for transmitting AIS messages. First, one of the unoccupied slots within the selected subblock is allocated for the periodic transmission of position reports. Next, to transmit various types of AIS messages, an unoccupied slot is randomly selected from candidate slots located around the previously allocated slot. Experimental simulations are conducted to evaluate the performance of BSO-TDMA. The results show that BSO-TDMA has better performance than that of the existing SOTDMA.