• 제목/요약/키워드: sheet deposition

검색결과 288건 처리시간 0.029초

열 CVD에 의한 탄소나노튜브의 성장 및 구조의 온도 의존성 (Temperature dependence on the growth and structure of carbon nanotubes by thermal chemical vapor deposition)

  • 이철진;손권희;이태재;류승철;최성헌;유재은
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1494-1496
    • /
    • 2000
  • We have studied the temperature dependence on the growth and structure of carbon nanotubes using thermal chemical vapor deposition. All the carbon nanotubes have bamboo shaped multi walled structure with closed tip. The growth rate and density of carbon nanotubes increase with increasing growth temperature. The numbers of graphite sheet at the wall increase with increasing growth temperature. The crystallinity of graphite sheets become enhanced at the high growth temperature.

  • PDF

ALD Pt 나노입자의 고온 거동에 대한 연구 (Study on the Nanoscale Behavior of ALD Pt Nanoparticles at Elevated Temperature)

  • 안지환
    • 한국정밀공학회지
    • /
    • 제33권8호
    • /
    • pp.691-695
    • /
    • 2016
  • This paper covers the investigation of the microscale behavior of Pt nanostrucures fabricated by atomic layer deposition (ALD) at elevated temperature. Nanoparticles are fabricated at up to 70 ALD cycles, while congruent porous nanostructures are observed at > 90 ALD cycles. The areal density of the ALD Pt nanostructure on top of the SiO2 substrate was as high as 98% even after annealing at $450^{\circ}C$ for 1hr. The sheet resistance of the ALD Pt nanostructure dramatically increased when the areal density of the nanostructure decreased below 85 - 89% due to coarsening at elevated temperature.

Control of Deposition Parameters in ITO Films: Figure of Merit

  • Kim, H.H.;Park, C.H.;M.J. Cho;K.J. Lim;J.H. Shin;Park, K.J.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.398-401
    • /
    • 2001
  • Indium tin oxide films were deposited on unheated PET substrates by DC reactive magnetron sputtering of In-Sn (90-10 wt%) metallic alloy target. Electrical and optical properties of as-deposited films were systematically studied by control of the deposition parameters such as working pressure, DC power, and oxygen partial pressure. The figures of merit are important factors that summarize briefly the relationship between electrical and optical properties of transparent conducting films. The formulae of T/R$\sub$sh/ and T$\^$10//R$\sub$sh/ are expressed as a function of transmittance and sheet resistance. The best values of those figures of merit were approximately 38.6 and 8.95 (x10$\^$-3/Ω$\^$-1/), respectively.

  • PDF

ITO투명도전막의 전기, 광학적 특성 및 그 응용 (The Application and Electrical, Optical Properties of $In_2O_3$: Sn Transparent Conducting Films)

  • 이동훈;박기철;박창배;김기완
    • 대한전자공학회논문지
    • /
    • 제23권4호
    • /
    • pp.498-505
    • /
    • 1986
  • In2O3: Sn(ITO) transparent conducting films were fabricated by the electron beam evaporation method. The dependence of their electrical and optical properties on deposition conditions were examined. The optimum evaporation conditions were such that the deposition rate was 5-10\ulcornersec, oxygen partial pressure was 4x10**_4 torr, substate temperatudre was above 300\ulcorner, and SnO2 doping rate was 10 mol%. The values of sheet resistance and transmittance of the films in visible region fabricated under these optimum conditins were 12\ulcorner/ and 87-99%, respecively. And the energy conversion efficiency of the SIS solar cell fabricated using ITO was 9.16%. It is shown that the transparent conducting films can be applied to the TV camear pick-up tube and solar cell.

  • PDF

ALD법을 이용해 증착된 TaN 박막의 Cu 확산방지 특성 (Characteristics of TaN by Atomic Layer Deposition as a Copper Diffusion Barrier)

  • 나경일;허원녕;부성은;이정희
    • 센서학회지
    • /
    • 제13권3호
    • /
    • pp.195-198
    • /
    • 2004
  • For a diffusion barrier against copper, tantalum nitride films have been deposited on $SiO_{2}$ by atomic layer deposition (ALD), using PEMAT(Pentakis(ethylmethylamino)tantalum) and $NH_{3}$ as precursors, Ar as purging gas. The deposition rate of TaN at substrate temperature $250^{\circ}C$ was about $0.67{\AA}$ per one cycle. The stability of TaN films as a Cu diffsion barrier was tested by thermal annealing for 30 minutes in $N_{2}$ ambient and characterized through XRD, sheet resistance, and C-V measurement(Cu($1000{\AA}$)/TaN($50{\AA}$)/$SiO_{2}$($2000{\AA}$)/Si capacitor fabricated), which prove the TaN film maintains the barrier properties Cu below $400^{\circ}C$.

Low-Temperature Plasma Enhanced Chemical Vapor Deposition Process for Growth of Graphene on Copper

  • ;장해규;채희엽
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.433-433
    • /
    • 2013
  • Graphene, $sp^2$-hybridized 2-Dimension carbon material, has drawn enormous attention due to its desirable performance of excellent properties. Graphene can be applied for many electronic devices such as field-effect transistors (FETs), touch screen, solar cells. Furthermore, indium tin oxide (ITO) is commercially used and sets the standard for transparent electrode. However, ITO has certain limitations, such as increasing cost due to indium scarcity, instability in acid and basic environments, high surface roughness and brittle. Due to those reasons, graphene will be a perfect substitute as a transparent electrode. We report the graphene synthesized by inductive coupled plasma enhanced chemical vapor deposition (ICP-PECVD) process on Cu substrate. The growth was carried out using low temperature at $400^{\circ}C$ rather than typical chemical vapor deposition (CVD) process at $1,000^{\circ}C$ The low-temperature process has advantage of low cost and also low melting point materials will be available to synthesize graphene as substrate, but the drawback is low quality. To improve the quality, the factor affect the quality of graphene was be investigated by changing the plasma power, the flow rate of precursors, the scenario of precursors. Then, graphene film's quality was investigated with Raman spectroscopy and sheet resistance and optical emission spectroscopy.

  • PDF

진공열처리온도에 따른 GZO/Cu 박막의 구조적, 광학적, 전기적 특성 변화 (Effect of Post Deposition Annealing Temperature on the Structural, Optical and Electrical Properties of GZO/Cu Films)

  • 김대일
    • 한국전기전자재료학회논문지
    • /
    • 제24권9호
    • /
    • pp.739-743
    • /
    • 2011
  • Ga doped ZnO (GZO)/Cu bi-layer films were deposited with RF and DC magnetron sputtering on glass substrate and then the effect of post deposition annealing temperature on the structural, optical and electrical properties of the films was investigated. The post deposition annealing process was conducted for 30 minutes in gas pressure of $1{\times}10^{-3}$ Torr and the annealing temperatures were 150 and $300^{\circ}C$. With increasing annealing temperature, GZO/Cu films showed an increment in the prefer orientation of ZnO (002) diffraction peak in the XRD pattern and the optical transmittance in a visible wave region was also increased, while the electrical sheet resistance was decreased. The GZO/Cu films annealed at $300^{\circ}C$ showed the highest optical transmittance of 70% and also showed the lowest electrical resistance of $85\;{\Omega}/{\Box}$ in this study.

황산철 도금액 중 Si 입자의 공석 특성 (Co-deposition of Si Particles During Electrodeposition of Fe in Sulfate Solution)

  • 문성모;이상열;이규환;장도연
    • 한국표면공학회지
    • /
    • 제37권6호
    • /
    • pp.319-325
    • /
    • 2004
  • Fe thin films containing Si particles were prepared on metallic substrates by electrodeposition method in sulfate solutions and the content of codeposited Si particles in the films was investigated as a function of applied current density, the content of Si particels in the solution, solution pH, solution temperature and concentration of $FeSO_4$$7H_2$O in the solution. The amount of Si codeposited in the film was not dependent on the applied current density, solution pH and solution temperature, while it was dependent on the content of Si particles in the solution and the concentration of $FeSO_4$$7H_2$O in the solution. The amount of Si codeposited in the film increased with increasing content of Si particles in the solution but reached a maximum value of about 6 wt% when the content of Si particles in the solution exceeds 100 g/l. On the other hand, the content of Si codeposited in the film increased up to about 17 wt% with decreasing concentration of $FeSO_4$$7H_2$O in the solution. These results would be applied to the fabrication of very thin Fe-6.5 wt% Si sheets for electrical applications.

이온빔 스퍼터링으로 증착한 IZTO 박막의 결정화 거동과 전기적 특성 분석 (Crystallization Behavior and Electrical Properties of IZTO Thin Films Fabricated by Ion-Beam Sputtering)

  • 박지운;박양규;이희영
    • 한국전기전자재료학회논문지
    • /
    • 제34권2호
    • /
    • pp.99-104
    • /
    • 2021
  • Ion-beam sputtering (IBS) was used to deposit semiconducting IZTO (indium zinc tin oxide) thin films onto heavily-doped Si substrates using a sintered ceramic target with the nominal composition In0.4Zn0.5Sn0.1O1.5, which could work as a channel layer for oxide TFT (oxide thin film transistor) devices. The crystallization behavior and electrical properties were examined for the films in terms of deposition parameters, i.e. target tilt angle and substrate temperature during deposition. The thickness uniformity of the films were examined using a stylus profilometer. The observed difference in electrical properties was not related to the degree of crystallization but to the deposition temperature which affected charge carrier concentration (n), electrical resistivity (ρ), sheet resistance (Rs), and Hall mobility (μH) values of the films.

Recent progress in oxide phosphor thin-film electroluminescent devices

  • Minami, Tadatsugu;Miyata, Toshihiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.27-32
    • /
    • 2006
  • The present status and prospects for further development of thin-film electroluminescent (TFEL) devices using oxide phosphors are described. High-luminance oxide TFEL devices have been recently developed using a new combinatorial deposition technique featuring rf magnetron sputtering with a subdivided powder target. In addition, new flexible oxide TFEL devices have been fabricated on an oxide ceramic sheet and operated stably in air above $200^{\circ}C$.

  • PDF