DOI QR코드

DOI QR Code

Effect of Post Deposition Annealing Temperature on the Structural, Optical and Electrical Properties of GZO/Cu Films

진공열처리온도에 따른 GZO/Cu 박막의 구조적, 광학적, 전기적 특성 변화

  • Kim, Dae-Il (School of Materials Science and Engineering, University of Ulsan)
  • 김대일 (울산대학교 첨단소재공학부)
  • Received : 2011.07.19
  • Accepted : 2011.08.02
  • Published : 2011.09.01

Abstract

Ga doped ZnO (GZO)/Cu bi-layer films were deposited with RF and DC magnetron sputtering on glass substrate and then the effect of post deposition annealing temperature on the structural, optical and electrical properties of the films was investigated. The post deposition annealing process was conducted for 30 minutes in gas pressure of $1{\times}10^{-3}$ Torr and the annealing temperatures were 150 and $300^{\circ}C$. With increasing annealing temperature, GZO/Cu films showed an increment in the prefer orientation of ZnO (002) diffraction peak in the XRD pattern and the optical transmittance in a visible wave region was also increased, while the electrical sheet resistance was decreased. The GZO/Cu films annealed at $300^{\circ}C$ showed the highest optical transmittance of 70% and also showed the lowest electrical resistance of $85\;{\Omega}/{\Box}$ in this study.

Keywords

References

  1. K. M. Kim, E. M. Jin, and C. B. Park, J. Kor. Inst. Electron. Eng., 19, 901 (2006).
  2. C. Cheng and J. Ting, Thin Solid Films, 516, 203 (2007). https://doi.org/10.1016/j.tsf.2007.05.051
  3. Y. Lu, C. Chang, S. Tsai, and T. Wey, Thin Solid Films, 56, 447 (2004).
  4. D. I. Kim, Vacuum, 81, 279 (2006). https://doi.org/10.1016/j.vacuum.2006.04.003
  5. C. S. Son, Kor. J. Mater. Res., 21, 144 (2011). https://doi.org/10.3740/MRSK.2011.21.3.144
  6. W. T. Yen, Y. C. Lin, P. C. Yao, J. H. Ke, and Y. L. Chen, Thin Solid Films, 518, 3882 (2010). https://doi.org/10.1016/j.tsf.2009.10.149
  7. H. Makino, T. Yamada, N. Yamamoto, and T. Yamamoto, Thin Solid Films, 30, 1521 (2010).
  8. B. D. Cullity, Elements of X-ray Diffraction, (Addition-Wesley, Reanding, Massachusetts, 1978) p. 102.
  9. K. Shimakawa and T. Itoh, Jpn. J. Appl. Phys., 46, 24 (2007). https://doi.org/10.1143/JJAP.46.24
  10. G. Haacke, J. Appl. Phys., 47, 4086 (1976). https://doi.org/10.1063/1.323240
  11. J. H. Park, J. H. Chae, and D. Kim, J. Alloy. Comp., 478, 330 (2009). https://doi.org/10.1016/j.jallcom.2008.11.065
  12. V. Papaefthimiou and S. Kennou, Surf. Sci., 497, 566 (2004).
  13. L. Chkoda, C. Heske, M. Sokolowski, E. Umbach, F. Steuber, M. Stossel, and J. Simmerere, Synthetic Met., 111, 315 (2000). https://doi.org/10.1016/S0379-6779(99)00355-0